x2 – c2t2, где с – скорость света. Принципиальным изменением здесь является знак минус, который говорит о том, что события в пространстве-времени связаны с двумя конусами. Один (на нашей схеме это треугольник, поскольку пространство сократили на одно измерение) представляет будущее от нашего события, а другой – прошлое. Это геометрическое представление стало практически универсальным для современной физики.
Матричная алгебра позволяет делать расчеты для n-мерного пространства. По мере распространения новых идей складывался и новый геометрический язык для этого пространства, основанный на абстрактной алгебраической системе вычислений. Кейли считал свою идею не более чем удобным обозначением и предсказывал, что она никогда не получит иного применения. Сегодня эта методика распространилась во всех областях науки, особенно в такой, как статистика. Медики – одни из самых активных потребителей матриц, занимающиеся поисками статистически значимых связей между причиной и следствием.
Геометрические образы упрощают доказательство теорем. Критики утверждают, что эти новомодные геометрии относятся к пространствам, которые никогда не существовали. Алгебраисты возражают, что алгебра для n переменных существует практически наверняка, и в любом случае всякий прием, позволяющий сделать новые открытия в столь многих областях математики, заслуживает серьезного и пристального интереса. Джордж Сальмон писал: «Я уже полностью обсудил эту проблему (решения некоторой системы уравнений), когда даны три уравнения с тремя переменными. Теперь перед нами стоит вопрос о схожей задаче в пространстве с p измерениями, и мы склонны считать это чисто алгебраическим вопросом, независимым от каких-либо геометрических соображений. Но нам придется местами прибегнуть к геометрическому языку… потому что так легче понять, как применить к системе p уравнений процесс, аналогичный тому, который применили к системе из трех уравнений».
Реальное пространство
Существуют ли многомерные пространства? Конечно, ответ зависит от того, что мы подразумеваем под словом «существуют», но большинство людей не склонны вникать в такие тонкости, особенно если им что-то не нравится. Проблема стала очевидной в 1869 г. В знаменитом обращении к Британской ассоциации содействия развитию наук, позже напечатанном под заголовком «Мольба к математикам», Джеймс Джозеф Сильвестр указал, что важнейшим условием развития математики является обобщение. Ученый утверждал, что здесь главное – допустимость, а не прямое подтверждение физического опыта. Он говорил далее, что при наличии определенного навыка можно легко представить себе четыре измерения, а значит, пространство с четырьмя измерениями допустимо.
Это так разъярило ученого-шекспироведа Клемента Инглби, что он вдохновил великого философа Иммануила Канта доказать, будто трехмерность – неотъемлемая и бесспорная характеристика пространства, абсолютно отвергая доводы Сильвестра. Природа реального пространства не является предметом математического спора. В то время подавляющее большинство английских математиков соглашалось с Инглби. Но ряд ученых с континента не были с ним согласны. Грассман утверждал: «Теоремы “Учения о протяженности” не просто служат переводом геометрических результатов на язык абстракции; они обладают гораздо более важным обобщающим значением, ибо в то время, когда обычная геометрия остается узницей трех [физических] измерений, абстрактная наука не имеет никаких пределов».
Сильвестр обозначил свою позицию: «Немало ученых предпочли бы считать обобщенное понятие пространства всего лишь замаскированной формой алгебраической абстракции, но то же можно сказать о нашем представлении бесконечности, или о невозможных линиях, или о линиях, образующих угол, равный 0, в геометрии – понятиях, в пользе и необходимости которых уже никто не сомневается. Доктор Сальмон в своем расширенном изложении теории Мишеля Шаля о характеристиках поверхностей, мистер Клиффорд в вопросах о вероятности и я сам в теории о разбиении числа, а также в моей статье о барицентрической проекции ощущали и получали доказательства практической пользы четырехмерного пространства, как если бы оно было допустимо».
Многомерное пространство
В итоге в споре победил Сильвестр. Современные математики допускают существование явления, если оно логически непротиворечиво. Это может противоречить физическому опыту, что не имеет отношения к математической сущности. Тогда многомерные пространства ничуть не менее реальны, чем привычное нам пространство с тремя измерениями, поскольку мы можем без труда дать ему формальное определение.
Теперь математика многомерных пространств стала чисто алгебраической дисциплиной и основана на явных обобщениях, начинающихся с маломерных пространств. Например, любая точка на плоскости (в двумерном пространстве) может быть описана двумя координатами, а любая точка в трехмерном пространстве – тремя координатами. Отсюда остается сделать короткий шаг к описанию точки в четырехмерном пространстве как набору четырех координат и в более общем плане к определению точки в n-мерном пространстве как списку из n координат. Тогда само по себе n-мерное пространство (n-пространство) будет всего лишь набором таких точек.
Аналогичные алгебраические операции позволят вычислить расстояние между двумя любыми точками в n-пространстве, угол между двумя любыми линиями и т. д. Отныне и впредь главную роль играет воображение: самые обычные геометрические формы в двух или трех измерениях имеют прямые аналоги в n измерениях, и чтобы их найти, нужно описать знакомые формы с использованием алгебры координат, а затем расширить это описание до n координат.
Например, окружность на плоскости или сфера в трехмерном пространстве состоят из всех точек, что лежат на фиксированном расстоянии (радиус) от выбранной точки (центр). Явным аналогом для n-пространства будет всё множество точек, расположенных на фиксированном удалении от выбранной. Используя формулу для расстояний, мы превращаем это в чисто алгебраическое условие, и полученный в результате объект известен как (n − 1) – мерная гиперсфера, или (n − 1) – сфера. Число измерений уменьшается с n до n − 1, потому что, например, окружность в двумерном пространстве становится кривой, т. е. одномерным объектом. А сфера в пространстве является двумерной поверхностью. Сплошная гиперсфера в n измерениях называется n-шар. Таким образом, Земля – это 3-шар, а ее поверхность – 2-сфера.
В наше время такая точка зрения называется линейной алгеброй. Она используется не только в математике, но и в других областях науки, особенно в инженерии и статистике. Также она является стандартной техникой вычислений в экономике. Кейли утверждал, что его матрицы вряд ли получат какое-то практическое применение. Конечно, он ошибался.
К 1900-м гг. предсказание Сильвестра воплотилось в жизнь, особенно с освоением тех областей математики и физики, где концепция многомерного пространства стала серьезным подспорьем. Одной из таких областей стала теория относительности Эйнштейна – своего рода гениальный прорыв в четырехмерной геометрии пространства-времени. В 1908 г. Герман Минковский осознал, что три координаты обычного пространства, объединенные с еще одной, временной, как раз и образуют четырехмерное пространство-время. Всякая точка в нем называется событием: это некая частица, которая появилась на мгновенье, а потом исчезла. Теория относительности действительно имеет дело с физическими свойствами событий. В традиционной механике точечная частица, движущаяся в пространстве, имеет координаты (x(t), y(t), z(t)) в любой момент времени t, и это положение меняется со временем. С точки зрения пространства-времени Минковского собрание таких точек является кривой в пространстве-времени, мировой линией этой частицы, и это самостоятельный объект со своими свойствами, существующий всё время. В теории относительности четвертое измерение имеет единственную и неизменную интерпретацию – время.
Четырехмерный гиперкуб, проекция на плоскость
Последующее включение силы притяжения в теории относительности потребовало широкого применения революционных римановских геометрий, хотя и модифицированных так, чтобы удовлетворять описанию Минковского для геометрии плоского пространства-времени. То, что происходит с пространством и временем в отсутствие массы, которая вызывает гравитационные искажения, Эйнштейн смоделировал как кривизну.
Математики предпочитали более гибкое понятие размерности и пространства, причем на рубеже XIX–XX вв. сама математика, судя по всему, всё больше требовала принятия многомерной геометрии. Теория функций двух комплексных переменных как естественное продолжение комплексного анализа нуждалась в представлении о пространстве с двумя комплексными измерениями. Но каждое такое измерение сводится к двум действительным измерениям, а значит, нравится вам это или нет, вы рассматриваете четырехмерное пространство. Римановское многообразие и алгебра многих переменных обеспечили дальнейшую мотивацию для исследований в этом направлении.
Обобщенные координаты
Однако еще одним мощным стимулом к принятию многомерной геометрии стало толкование механики в терминах обобщенных координат, сделанное Гамильтоном в 1835 г. Это исследование было инициировано Лагранжем в его «Аналитической механике» в 1788 г. Механическая система имеет столько же координат, сколько у нее степеней свободы – иными словами, возможностей изменять свое состояние. По сути, число степеней свободы – не что иное, как замаскированное измерение.
Например, необходимо шесть обобщенных координат, чтобы описать конфигурацию элементарного велосипеда: одна для угла, под которым руль крепится к раме, две для угловой позиции каждого из колес, еще одна для педальной оси и еще две для точек вращения педалей. Конечно, велосипед – трехмерный