трансфинитных чисел, или бесконечных кардинальных чисел, которые дали возможность определять, сколько элементов содержится в бесконечном множестве. Более того, два множества равномощны тогда и только тогда, когда они имеют равное количество элементов – равные кардинальные числа.
Начальной точкой стал новый вид чисел, который Кантор обозначил символом א0. Это буква алеф из иврита с нижним индексом 0, или алеф-ноль. Это число по определению является кардинальным для множества всех натуральных чисел. Но, настаивая на том, что равномощные множества также имеют одно и то же кардинальное число, Кантор затем рассудил, что всякое множество, для которого может быть установлено взаимно однозначное соответствие со множеством натуральных чисел, также должно иметь мощность א0. Например, множество всех квадратов имеет мощность א0. То же относится ко множеству всех четных чисел:
и множеству всех нечетных:
Одно из следствий этого определения таково: меньшее множество может иметь мощность, равную мощности большего множества. Но здесь в определении Кантора не было логических противоречий, он решил считать эту особенность естественным следствием своей идеи и не прогадал. Главное – не считать, что бесконечные кардинальные числа могут вести себя точно так же, как и конечные. Да и с какой стати? Ведь они не конечны!
Как вы думаете, количество целых чисел (и положительных, и отрицательных) больше количества натуральных? Будет ли их вдвое больше? Нет, потому что мы можем сопоставить эти два множества вот так:
Арифметика бесконечных кардинальных чисел тоже довольно странная. Например, мы только что увидели, что множества четных и нечетных натуральных чисел имеют кардинальное число א0. Поскольку у них нет одинаковых элементов, кардинальное число их объединения – множества, полученного в результате их совмещения, – должно быть א0 + א0. Номы знаем, что представляет собой такое объединение: это натуральные числа с кардинальным числом א0. Видимо, придется заключить:
א0 + א0 = א0.
Так мы и поступим. Но и здесь нет противоречий: мы не можем поделить א0, чтобы получить 1 + 1 = 1, потому что א0 не является натуральным числом. Такое деление невозможно, поскольку не имеет смысла. Действительно, это равенство показывает, что деление на א0 не имеет смысла. И снова мы принимаем это как плату за прогресс.
Всё это очень хорошо, однако кому-то может показаться, что א0 не более чем новый забавный символ для старой доброй бесконечности и по сути ничего нового здесь не сказано. Разве это не тот случай, когда все бесконечные множества имеют кардинальное число א0? Разве все бесконечности не равны?
Один из кандидатов на бесконечное кардинальное число, большее, чем א0, – точнее, на бесконечное множество, для которого невозможно установить взаимно однозначное соответствие с множеством целых чисел, – это множество всех рациональных чисел, обычно обозначаемое Q. В конце концов, есть бесконечно много рациональных чисел в промежутке между двумя любыми последовательными целыми числами, и здесь уже не работает та хитрость, которая помогала нам с целыми числами.
Однако в 1873 г. Кантор доказал, что Q также имеет кардинальное число א0. Взаимно однозначное соответствие основательно перемешивает числа, но никто и не говорил, что они должны располагаться согласно порядковым номерам. Кажется, всё выглядит замечательно: всякое бесконечное множество имеет кардинальное число א0.
В том же году Кантор совершил важный прорыв. Он доказал, что последовательность всех действительных чисел не имеет кардинального числа א0. Неожиданную теорему об этом он опубликовал в 1874 г. Так что даже в неординарном понимании Кантора существует больше действительных чисел, чем целых. Одна бесконечность может быть больше другой.
Насколько велика мощность действительных чисел? Кантор надеялся, что это будет א1, следующее наибольшее кардинальное число после א0. Но он не смог этого доказать и потому обозначил новое кардинальное число С, от первой буквы слова «континуум». Ожидаемое уравнение С = א1 было названо континуум-гипотезой. Математики сумели вывести соотношение между С и א0 только в 1960 г., когда Пол Коэн доказал, что ответ зависит от аксиом, которые вы выбираете для теории множеств. С одним разумным набором аксиом два кардинальных числа равны. Но с набором других, не менее обоснованных, аксиом они будут разными.
Обоснованность равенства С = א1 зависит от выбранных аксиом, но связанное с ним равенство от этого не зависит. Это равенство С = 2א0. Для любого кардинального числа A мы можем определить 2A как кардинальное число множества (мощностью А) всех его подмножеств. И мы можем очень легко доказать, что 2A всегда больше A. Это значит, что не только некоторые бесконечности больше, чем другие, но и нет бесконечно большого кардинального числа.
Противоречия
Однако величайшей целью фундаментальной математики было все-таки не доказательство существования математических идей. Гораздо важнее было доказать, что математика логически последовательна. Ведь всем сегодня понятно: можно выстроить некоторую четкую последовательность безупречно правильных логических шагов, приводящую к абсурдному выводу. Может, вы соберетесь доказать, что 2 + 2 = 5 или 1 = 0, например. Или что 6 – простое число, или что π = 3.
Ведь может показаться, что одно незначительное противоречие будет иметь ограниченные последствия. В быту люди вообще спокойно воспринимают такие противоречия, заявляя в один момент, что глобальное потепление уничтожает планету, а в другой – что авиакомпании-лоукостеры – гениальное изобретение. Но для математики последствия не могут быть ограниченными, и вы не избежите логических противоречий, просто закрыв на них глаза. В математике, как только что-то доказано, вы можете использовать это для других доказательств. Доказательство того, что 0 = 1, повлечет еще больше неприятностей. Например, утверждение, будто все числа равны. Если x – любое число, то сначала умножим обе части равенства 0 = 1 на х. Тогда 0 = x. И если y – любое другое число, то 0 = y. Значит, x = y.
Хуже того, стандартный метод доказательства от противного означает, что может быть доказано что угодно, если доказано, что 0 = 1. Чтобы доказать Великую теорему Ферма, мы рассуждаем так.
Предположим, что Великая теорема Ферма неверна.
Тогда 0 = 1.
Противоречие.
Значит, теорема Ферма верна.
Если бы было верно неудовлетворительное равенство [0 = 1], этот метод доказал бы, что Великая теорема Ферма неверна.
Предположим, что Великая теорема Ферма неверна.
Тогда 0 = 1.
Противоречия нет.
Значит, теорема Ферма неверна.
Коль скоро всё правда – и при этом ложь, о чем вообще может идти речь? Вся математика превращается в пустую и глупую игру.
Давид Гильберт окончил в 1885 г. университет в Кенигсберге, защитив сразу свою диссертацию по теории инвариантов. Он работал в университете, пока не стал профессором в Гёттингене в 1895 г. Но он продолжал развивать теорию инвариантов, доказав свою теорему о базисе в 1888 г. Его методы отличались от принятых в то время способов исследования абстрактным подходом, и один из ведущих ученых того времени, Пауль Гордан, вообще счел его труды неудовлетворительными. Перед публикацией в авторитетном математическом журнале Mathematische Annalen Гильберт переработал свою статью, после чего Клейн назвал ее «самой важной работой по общей алгебре из всего, что когда-либо публиковал этот журнал».
В 1893 г. Гильберт начал писать более всеобъемлющую монографию по теории чисел под названием «Отчет о числах». Хотя изначально целью было обобщение уже накопленных сведений, ученый включил в статью много собственных открытий, ставших позже основой для того, что сейчас нам известно как теория полей классов.
К 1899 г. он снова поменял направление исследований и занялся аксиоматическим обоснованием геометрии Евклида. В 1923 г. на Втором международном конгрессе математиков в Париже он представил список из 23 главных нерешенных проблем. Этот список, известный как проблемы Гильберта, оказал решающее влияние на главные направления математики в последующие годы.
Примерно в 1909 г. его работа по интегральным уравнениям привела к открытию гильбертовых пространств, сейчас составляющих основу квантовой механики. Также в статье от 1915 г. он подошел вплотную к открытию уравнений Эйнштейна для общей теории относительности. Он добавил в доказательство примечание о том, что его статья согласуется с уравнениями Эйнштейна. Из-за этого сложилось ошибочное убеждение о том, что Гильберт якобы предвосхитил открытие Эйнштейна.
В 1930 г. Гильберт ушел в отставку и получил титул почетного гражданина Кенигсберга. Его речь на церемонии заканчивалась словами: «Мы должны знать. Мы будем знать» – кратким выражением его веры в математику и решимости справиться с любыми проблемами.
Гильберт
Следующий важный шаг был сделан Давидом Гильбертом, пожалуй, самым великим математиком своего времени. Он имел привычку заниматься одной областью математики примерно десять лет, полируя решения основных задач, а затем переходить в другую. По убеждению Гильберта, рано или поздно удастся доказать, что математика никогда не может привести к логическому противоречию. Также он осознал, что в этом проекте не будет пользы от физического восприятия. Если математика противоречива, то должно быть возможно доказать, что 0 = 1, и тогда физическая интерпретация уравнения будет: 0 коров = 1 корова, т. е. коровы могут растворяться в воздухе, как дым. Это непохоже на правду. Но нет никакой гарантии, что математика натуральных чисел обязана отвечать физике коров, или, по крайней мере, нельзя себе представить, что коровы способны внезапно исчезнуть (это может произойти в квантовой механике, но с крайне малой вероятностью). В конечной Вселенной числу коров есть предел, но нет предела в математике количеству целых чисел. Значит, наша интуиция может оказаться обманчивой, и ее следует игнорировать.