Укрощение бесконечности. История математики от первых чисел до теории хаоса — страница 65 из 66

И для такого рода систем клеточный автомат оказался чрезвычайно эффективным. Он позволяет игнорировать бесполезные детали, касающиеся отдельных компонентов, и вместо этого фокусироваться только на том, как они взаимодействуют. Это оказался прекрасный способ выяснить, какие факторы действительно важны, и приоткрыть завесу тайны над тем, почему сложные системы делают то, что они делают.

Геология и биология

Сложной системой, бросающей вызов традиционной технике моделирования, является процесс формирования речных бассейнов и устья реки. Питер Барроу использовал клеточный автомат, чтобы объяснить, почему эти природные объекты выглядят именно так, как выглядят. Автоматы моделируют взаимодействие между водой, берегами и донными отложениями. Результат объясняет, как разная скорость эрозии почвы влияет на форму русла и как реки вымывают почву, – крайне важные вопросы для речной инженерии и управления. Высказанные здесь идеи также заинтересовали нефтедобывающие компании, поскольку нефть и газ часто обнаруживают в геологических пластах, некогда бывших донными отложениями.

Другой отличный пример приложения клеточного автомата дает нам биология. Ганс Мейнхардт использовал его для моделирования образования узоров на шкуре животных, от раковин моллюсков до зебр. Ключевым фактором оказывается концентрация определенных химических веществ. Взаимодействия – реакции внутри отдельной клетки и диффузия между соседними клетками. Два вида взаимодействия в сочетании создают правила для последующего формирования узора. Результаты показали те закономерности активации и подавления, которые включают и выключают ответственные за синтез пигментов гены во время развития каждого организма.

Стюарт Кауфман применил множество методов теории сложности для проникновения в другую загадку биологии – формирование индивидуального организма. Рост организма неизбежно включает множество законов развития, и это не может быть простым переводом в органическую форму информации, зашифрованной в ДНК. Самым перспективным направлением стало описание развития как сложной нелинейной динамической системы.

Клеточные автоматы сейчас стали признанным методом исследования, с ними связывают даже надежду на открытие новой теории происхождения жизни. Изобретенный фон Нейманом автомат самовоспроизведения чрезвычайно необычен, тщательно продуман для копирования одной очень сложной начальной конфигурации. Типичное ли это поведение для самовоспроизводящегося автомата, или мы можем увидеть, как самовоспроизведение начнется без обязательной и весьма специфической начальной конфигурации? В 1993 г. Чуи-Хсиен Чу и Джеймс Реггиа изобрели клеточный автомат с 29 состояниями, для которого случайно выбранное исходное состояние, или зародышевый бульон, породило самовоспроизводящиеся структуры более чем в 98 % случаев. В таком автомате самовоспроизводящиеся объекты становятся виртуальной сущностью.

Сложные системы поддерживают точку зрения, согласно которой на безжизненной планете с достаточно сложным химическим составом есть вероятность спонтанного зарождения жизни, способной самостоятельно организоваться в более сложные и изощренные формы. Остается лишь понять, какие правила необходимы для спонтанного появления самовоспроизводящихся конфигураций в нашей Вселенной, – иными словами, какие физические законы сделали этот первый судьбоносный шаг к появлению жизни не просто возможным, а неизбежным.

ЧТО НЕЛИНЕЙНАЯ ДИНАМИКА ДАЕТ НАМ

На первый взгляд может показаться, что хаос не имеет практического приложения из-за своей нерегулярности, непредсказуемости и высокой чувствительности к самым незначительным воздействиям. Но из-за того, что в основе хаоса лежат детерминированные законы, он оказывается очень даже полезным именно в силу этих обстоятельств.

Одно из важнейших его приложений – управление хаосом. В 1950-е математик Джон фон Нейман предположил, что нестабильность погоды в один прекрасный день может стать ее преимуществом, поскольку есть вероятность, что значительный желаемый эффект может быть достигнут несравнимо ничтожными воздействиями. В 1979 г. Эдвард Бельбруно понял, что такой эффект может быть использован в астронавтике, чтобы космическое судно смогло преодолеть невообразимо большое расстояние с минимальным расходом горючего. Однако полученные таким образом орбиты потребовали бы слишком длительного путешествия – два года от Земли до Луны, например, и НАСА тут же потеряло интерес к новой идее.

Спутник «Генезис», НАСА


В 1990 г. Япония запустила небольшой лунный спутник «Хагоромо», отделившийся от большего спутника «Хитэн», который остался на земной орбите. К сожалению, радиопередатчик на «Хагоромо» испортился, и «Хитэн» фактически стал ненужным. Японцы стремились хотя бы частично спасти миссию своих кораблей, но у «Хитэна» оставалось всего 10 % топлива, необходимого для достижения Луны по стандартной орбите. Один из инженеров вспомнил об идее Бельбруно и попросил его помочь. За десять месяцев «Хитэн» добрался до Луны и вернулся, собирая по пути частицы космической пыли, сохранив половину имевшегося топлива. Со времен этого первого успеха технология использовалась неоднократно, особенно при запуске спутника «Генезис», получившего пробы солнечного ветра, а также миссии ЕКА (Европейского космического агентства) «Смарт-1».

Как мы видим, методы нелинейной динамики стали применяться не только на Земле, но и в космосе. В 1990 г. Селсо Гребоджи, Эдвард Отт и Джеймс Йорк опубликовали фундаментальную работу по теории использования эффекта бабочки в управлении хаотичными системами. Метод применили для синхронизации целого ряда лазеров; для контроля нарушений сердечного ритма (здесь открылась возможность создания разумного кардиостимулятора); для управления электрической активностью мозга (для предотвращения эпилептических припадков); а также для более гладкого движения в турбулентном потоке (со временем это позволит существенно экономить топливо для самолетов).

Как была создана математика

История математики – длинная и причудливая. Первопроходцы в этой науке то совершали гениальные прорывы, то устремлялись по ложным тропам, забредая в тупики, из которых подчас не могли выбраться веками. Но такова судьба любых людей, пытающихся освоить неизведанное. Если бы дальнейший путь был прост и ясен, его мог бы преодолеть любой желающий. Зато в итоге за четыре тысячелетия сложилась та изысканная сложнейшая наука, которую мы называем математикой. Она возникла в сугубо практических целях, и в ней периоды неудержимой активности и роста сменялись временами застоя. Даже центры ее развития перемещались по планете в соответствии со всплесками и провалами развития человеческой культуры. В какие-то периоды ее развитие отвечало практическим запросам отдельной культуры, иногда она выбирала направление самостоятельно, и ее адепты становились в глазах общества просто чудаками, увлеченными игрой разума. И тем удивительнее было каждый раз, когда эти игры окупались в нашем мире, стимулировали развитие новых технологий и нового мировоззрения.

Математика никогда не стояла на месте. Новые приложения требовали новой математики, и она всегда отвечала на этот вызов. В частности, биология требовала от математики новых способов моделирования и взаимопонимания. Да и внутреннее развитие математики было бы невозможно без новых идей и теорий. Многие важные теоремы до сих пор не доказаны, однако математики не перестают работать над ними.

На протяжении всей своей долгой истории математика неизменно черпала вдохновение из двух источников: окружающего нас реального мира и мира человеческого воображения. Какой из них важнее? Никакой. Для нас имеет значение только их сочетание. Исторический подход убеждает нас в том, что математика черпала и мощь, и красоту равным образом из обоих источников. Времена древних греков часто воспеваются историками как Золотой век, когда логика, математика и философия были поставлены на службу человеку. Однако преимущества, полученные благодаря древним грекам, со временем стали лишь небольшой частицей истории. Математика еще никогда не была столь активна, столь многолика и необходима, как в нашем обществе.

Добро пожаловать в Золотой век математики!

Дополнительная литература

Печатные издания

Гаусс К. Ф. Арифметические исследования // Труды по теории чисел / общ. ред. И. М. Виноградова. М.: Изд-во Академии наук СССР, 1959.

Собел Д. Долгота. М.: Астрель, 2012.

Belbruno E. Fly Me to the Moon. Princeton: Princeton University Press, 2007.

Bell E. T. Men of Mathematiccs: in 2 vols. Harmondsworth: Pelican, 1953.

Bell E. T. The Development of Mathematics: reprint. New York: Dover, 2000.

Bourgne R., Azra J.-P. Écrites et Mémoires Mathématiques d’Évariste Galois. Paris: Gauthier-Villars, 1962.

Boyer C. B. A History of Mathematics. New York: Wiley, 1968.

Bühler W. K. Gauss: a Biographical Study. Berlin: Springer, 1981.

Cardan J. The Book of My Life / trans. Jean Stoner. London: Dent, 1931.

Cardano G. The Great Art or the Rules of Algebra / trans. T. Richard Witmer. Cambridge, MA: MIT Press, 1968.

Coolidge J. The Mathematics of Great Amateurs. New York: Dover, 1963.

Dantzig T. Number – the Language of Science / ed. J. Mazur. New York: Pi Press, 2005.

Euclid. The Thirteen Books of Euclid’s Elements: in 3 vols. / trans. by sir Thomas L. Heath. New York: Dover, 1956.

Fauvel J., Gray J. The History of Mathematics – a Reader. Basingstoke: Macmillan Education, 1987.

Fowler D. H. The Mathematics of Plato’s Academy. Oxford: Clarendon Press, 1987.

Hyman A. Charles Babbage. Oxford: Oxford University Press, 1984.

Joseph G. G. The Crest of the Peacock – non-European Roots of Mathematics. Harmondsworth: Penguin, 2000.

Katz V. J. A History of Mathematics. 2nd ed. Reading, MA: Addison-Wesley, 1998.