UNIX: взаимодействие процессов — страница 2 из 35

айта помогли добавить в книгу 8046 строк исходного кода на языке С.

С нетерпением жду комментариев, предложений и сообщений о замеченных опечатках.

W. Richard Stevens Tucson, Arizona July 1998

rstevens@kohala.com http://www.kohala.com/~rstevens

От издательства

Ваши замечания, предложения, вопросы отправляйте по адресу электронной почты comp@piter.com (издательство «Питер», компьютерная редакция).

Мы будем рады узнать ваше мнение!

Все исходные тексты, приведенные в книге, вы можете найти по адресу http://www.piter.com/download.

На web-сайте издательства http://www.piter.com вы найдете подробную информацию о наших книгах.

ЧАСТЬ 1ВВЕДЕНИЕ В IPC UNIX

ГЛАВА 1Обзор средств взаимодействия процессов Unix

1.1. Введение

Аббревиатура IPC расшифровывается как interprocess communication, то есть взаимодействие процессов. Обычно под этим понимается передача сообщений различных видов между процессами в какой-либо операционной системе. При этом могут использоваться различные формы синхронизации, требуемой современными видами взаимодействия, осуществляемыми, например, через разделяемую память.

В процессе развития операционных систем семейства Unix за последние 30 лет методы передачи сообщений эволюционировали следующим образом:

■ Каналы (pipes — глава 4) были первой широко используемой формой взаимодействия процессов, доступной программам и пользователю (из интерпретатора команд). Основным недостатком каналов является невозможность их использования между процессами, не имеющими общего родителя (ancestor), но этот недостаток был устранен с появлением именованных каналов (named pipes), или каналов FIFO (глава 4).

■ Очереди сообщений стандарта System V (System V message queues — глава 4) были добавлены к ядрам System V в начале 80-х. Они могут использоваться для передачи сообщений между процессами на одном узле вне зависимости от того, являются ли эти процессы родственными. Несмотря на сохранившийся префикс «System V», большинство современных версий Unix, включая и те, которые не произошли от System V, поддерживают эти очереди.

ПРИМЕЧАНИЕ

В отношении процессов Unix термин «родство» означает, что у процессов имеется общий предок. Подразумевается, что процессы, являющиеся родственниками, были созданы этим процессом-предком с помощью одной или нескольких «вилок» (forks). Простейшим примером будет вызов fork некоторым процессом дважды, что приведет к созданию двух порожденных процессов. Тогда можно говорить о родстве этих процессов между собой. Естественно, каждый порожденный процесс является родственником породившего. Родитель может позаботиться о возможности взаимодействия с порожденным процессом (создав канал или очередь сообщений) перед вызовом fork, и этот объект IPC будет унаследован порожденным процессом. Более подробно о наследовании объектов IPC рассказано в табл. 1.4. Нужно также отметить, что все процессы Unix теоретически являются потомками процесса init, который запускает все необходимое в процессе загрузки системы (bootstrapping). С практической точки зрения отсчет родства процессов лучше вести с оболочки (login shell) и всех процессов, ею созданных. В главе 9 [24] рассказано о сеансах и родственных отношениях процессов более подробно. 

ПРИМЕЧАНИЕ

Примечания вроде этого будут использоваться нами для того, чтобы уточнять особенности реализации, давать исторические справки и полезные советы. 

■ Очереди сообщений Posix (Posix message queues — глава 5) были добавлены в стандарт Posix (1003.1b-1993, о котором более подробно рассказано в разделе 1.7). Они могут использоваться для взаимодействия родственных и неродственных процессов на каком-либо узле.

■ Удаленный вызов процедур (remote procedure calls — RPC, часть 5) появился в 80-х в качестве средства для вызова функций на одной системе (сервере) программой, выполняемой на другой системе (клиенте). Это средство было разработано в качестве альтернативы для упрощения сетевого программирования. Поскольку между клиентом и сервером обычно передается информация (передаются аргументы для вызова функции и возвращаемые значения) и поскольку удаленный вызов процедур может использоваться между клиентом и сервером на одном узле, RPC можно также считать одной из форм передачи сообщений.

Интересно также взглянуть на эволюцию различных форм синхронизации в процессе развития Unix:

■ Самые первые программы, которым требовалась синхронизация (чаще всего для предотвращения одновременного изменения содержимого файла несколькими процессами), использовали особенности файловой системы, некоторые из которых описаны в разделе 9.8,

■ Возможность блокирования записей (record locking — глава 9) была добавлена к ядрам Unix в начале 80-х и стандартизована в версии Posix.1 в 1988.

■ Семафоры System V (System V semaphores — глава 11) были добавлены вместе с возможностью совместного использования памяти (System V shared memory — глава 14) и одновременно с очередями сообщений System V (начало 80-х). Эти IPC поддерживаются большинством современных версий Unix.

■ Семафоры Posix (Posix semaphores — глава 10) и разделяемая память Posix (Posix shared memory— глава 13) были также добавлены в стандарт Posix (1003.1b-1993, который ранее упоминался в связи с очередями сообщений Posix).

■ Взаимные исключения и условные переменные (mutex, conditional variable — глава 7) представляют собой две формы синхронизации, определенные стандартом программных потоков Posix (Posix threads, Pthreads — 1003.1с-1995). Хотя обычно они используются для синхронизации между потоками, их можно применять и при организации взаимодействия процессов.

■ Блокировки чтения-записи (read-write locks — глава 8) представляют собой дополнительную форму синхронизации. Она еще не включена в стандарт Posix, но, вероятно, скоро будет.

1.2. Процессы, потоки и общий доступ к информации

В традиционной модели программирования Unix в системе могут одновременно выполняться несколько процессов, каждому из которых выделяется собственное адресное пространство. Это иллюстрирует рис. 1.1. 

Рис. 1.1. Совместное использование информации процессами


1. Два процесса в левой части совместно используют информацию, хранящуюся в одном из объектов файловой системы. Для доступа к этим данным каждый процесс должен обратиться к ядру (используя функции read, write, lseek, write, lseek и аналогичные). Некоторая форма синхронизации требуется при изменении файла, для исключения помех при одновременной записи в файл несколькими процессами и для защиты процессов, читающих из файла, от тех, которые пишут в него.

2. Два процесса в середине рисунка совместно используют информацию, хранящуюся в ядре. Примерами в данном случае являются канал, очередь сообщений или семафор System V. Для доступа к совместно используемой информации в этом случае будут использоваться системные вызовы.

3. Два процесса в правой части используют общую область памяти, к которой может обращаться каждый из процессов. После того как будет получен доступ к этой области памяти, процессы смогут обращаться к данным вообще без помощи ядра. В этом случае, как и в первом, процессам, использующим общую память, также требуется синхронизация.

Обратите внимание, что ни в одном из этих случаев количество взаимодействующих процессов не ограничивается двумя. Любой из описанных методов работает для произвольного числа взаимодействующих процессов. На рисунке мы изображаем только два для простоты.

Потоки

Хотя концепция процессов в системах Unix используется уже очень давно, возможность использовать несколько потоков внутри одного процесса появилась относительно недавно. Стандарт потоков Posix.1, называемый Pthreads, был принят в 1995 году. С точки зрения взаимодействия процессов все потоки одного процесса имеют общие глобальные переменные (то есть поточной модели свойственно использование общей памяти). Однако потокам требуется синхронизация доступа к глобальным данным. Вообще, синхронизация, не являясь собственно формой IPC, часто используется совместно с различными формами IPC для управления доступом к данным.

В этой книге описано взаимодействие между процессами и между потоками. Мы предполагаем наличие среды, в которой поддерживается многопоточное программирование, и будем использовать выражения вида «если канал пуст, вызывающий поток блокируется до тех пор, пока какой-нибудь другой поток не произведет запись в канал». Если система не поддерживает потоки, можно в этом предложении заменить «потоки» на «процессы» и получится классическое определение блокировки в Unix, возникающей при считывании из пустого канала командой read. Однако в системе, поддерживающей потоки, блокируется только поток, запросивший данные из пустого канала, а все остальные потоки процесса будут продолжать выполняться. Записать данные в канал сможет другой поток этого же процесса или какой-либо поток другого процесса.

В приложении Б сведены некоторые основные характеристики потоков и дано описание пяти основных функций Pthread, используемых в программах этой книги.

1.3. Живучесть объектов IPC

Можно определить живучесть (persistence) любого объекта IPC как продолжительность его существования. На рис. 1.2 изображены три возможные группы, к которым могут быть отнесены объекты по живучести.

Рис. 1.2. Живучесть объектов IPC


1. Объект IPC, живучесть которого определяется процессом (process-persistent), существует до тех пор, пока не будет закрыт последним процессом, в котором он еще открыт. Примером являются неименованные и именованные каналы (pipes, FIFO).

2. Объект IPC, живучесть которого определяется ядром (kernel-persistent), существует до перезагрузки ядра или до явного удаления объекта. Примером являются очереди сообщений стандарта System V, семафоры и разделяемая память. Живучесть очередей сообщений Posix, семафоров и разделяемой памяти должна определяться по крайней мере ядром, но может определяться и файловой системой в зависимости от реализации.

3. Объект IPC, живучесть которого определяется файловой системой (filesystem-persistent), существует до тех пор, пока не будет удален явно. Его значение сохраняется даже при перезагрузке ядра. Очереди сообщений Posix, семафоры и память с общим доступом обладают этим свойством, если они реализованы через отображаемые файлы (так бывает не всегда).

Следует быть аккуратным при определении живучести объекта IPC, поскольку она не всегда очевидна. Например, данные в канале (pipe) обрабатываются ядром, но живучесть каналов определяется процессами, а не ядром, потому что после того, как последний процесс, которым канал был открыт на чтение, закроет его, ядро сбросит все данные и удалит канал. Аналогично, хотя каналы FIFO и обладают именами в файловой системе, живучесть их также определяется процессами, поскольку все данные в таком канале сбрасываются после того, как последний процесс, в котором он был открыт, закроет его.

В табл. 1.1 сведена информация о живучести перечисленных ранее объектов IPC.


Таблица 1.1. Живучесть различных типов объектов IPC

Тип IPCЖивучесть определяет
Программный канал (pipe)Процесс
Именованный канал (FIFO)Процесс
Взаимное исключение Posix (mutex)Процесс
Условная переменная Posix (condition variable)Процесс
Блокировка чтения-записи Posix (lock)Процесс
Блокировка записи fcntlПроцесс
Очередь сообщений Posix (message queue)Ядро
Именованный семафор Posix (named semaphore)Ядро
Семафор Posix в памяти (memory-based semaphore)Процесс
Разделяемая память Posix (shared memory)Ядро
Очередь сообщений System VЯдро
Семафор System VЯдро
Память с общим доступом System VЯдро
Сокет TCP (TCP socket)Процесс
Сокет UDP (UDP socket)Процесс
Доменный сокет Unix (Unix domain socket)Процесс

Обратите внимание, что ни один тип IPC в этой таблице не обладает живучестью, определяемой файловой системой. Мы уже упомянули о том, что три типа объектов IPC в стандарте Posix могут иметь этот тип живучести в зависимости от реализации. Очевидно, что запись данных в файл обеспечивает живучесть, определяемую файловой системой, но обычно IPC таким образом не реализуются. Большая часть объектов IPC не предназначена для того, чтобы существовать и после перезагрузки, потому что ее не переживают процессы. Требование живучести, определяемой файловой системой, скорее всего, снизит производительность данного типа IPC, а обычно одной из задач разработчика является именно обеспечение высокой производительности.

1.4. Пространства имен

Если два неродственных процесса используют какой-либо вид IPC для обмена информацией, объект IPC должен иметь имя или идентификатор, чтобы один из процессов (называемый обычно сервером — server) мог создать этот объект, а другой процесс (обычно один или несколько клиентов — client) мог обратиться к этому конкретному объекту.

Программные каналы (pipes) именами не обладают (и поэтому не могут использоваться для взаимодействия между неродственными процессами), но каналам FIFO сопоставляются имена в файловой системе, являющиеся их идентификаторами (поэтому каналы FIFO могут использоваться для взаимодействия неродственных процессов). Для других типов IPC, рассматриваемых в последующих главах, используются дополнительные соглашения об именовании (naming conventions). Множество возможных имен для определенного типа IPC называется его пространством имен (name space). Пространство имен — важный термин, поскольку для всех видов IPC, за исключением простых каналов, именем определяется способ связи клиента и сервера для обмена сообщениями.

В табл. 1.2 сведены соглашения об именовании для различных видов IPC.


Таблица 1.2. Пространства имен для различных типов IPC

Тип IPCПространство имен для создания или открытияИдентификатор после открытияPosix.1 1996Unix 98
Канал(Без имени)Дескриптор
FIFOИмя файла (pathname)Дескриптор
Взаимное исключение Posix(Без имени)Указатель типа pthread_mutex_t
Условная переменная Posix(Без имени)Указатель типа pthread_cond_t
Блокировка чтения-записи Posix(Без имени)Указатель типа pthread_rwlock_t
Блокировка записей fcntlИмя файлаДескриптор
Разделяемая память PosixPosix-имя IPCДескриптор
Очередь сообщений System VКлюч key_tИдентификатор IPC System V
Семафор System VКлюч key_tИдентификатор IPC System V
Разделяемая память System VКлюч key_tИдентификатор IPC System V
Двери (doors)Имя файлаДескриптор
Удаленный вызов процедур (RPC) SunПрограмма/версияДескриптор (handle) RPC
Сокет TCPIP-адрес и порт TCPДескриптор.1g
Сокет UDPIP-адрес и порт TCPДескриптор.1g
Доменный сокет Unix (domain socket)Полное имя файлаДескриптор.1g

Здесь также указано, какие формы IPC содержатся в стандарте Posix.1 1996 года и какие были включены в стандарт Unix 98. Об обоих этих стандартах более подробно рассказано в разделе 1.7. Для сравнения мы включили в эту таблицу три типа сокетов, которые подробно описаны в [24]. Обратите внимание, что интерфейс сокетов (Application Program Interface — API) стандартизируется рабочей группой Posix.1g и должен в будущем стать частью стандарта Posix.1.

Хотя стандарт Posix. 1 и дает возможность использования семафоров, их поддержка не является обязательной для производителей. В табл. 1.3 сведены функции, описанные в стандартах Posix.1 и Unix 98. Каждая функция может быть обязательной (mandatory), неопределенной (not defined) или необязательной (дополнительной — optional). Для необязательных функций мы указываем имя константы (например, _POSIX_THREADS), которая будет определена (обычно в заголовочном файле ), если эта функция поддерживается. Обратите внимание, что Unix 98 содержит в себе Posix.1 в качестве подмножества.


Таблица 1.3. Доступность различных форм IPC

Тип IPCPosix.1 1996Unix 98
Программный каналОбязателенОбязателен
FIFOОбязателенОбязателен
Взаимное исключение Posix_POSIX_THREADSОбязателен
Условная переменная Posix_POSIX_THREADSОбязателен
Взаимные исключения и условные переменные между процессами_POSIX_THREADS_PROCESS_SHAREDОбязателен
Блокировка чтения-записи Posix(He определен)Обязателен
Блокировка записей fcntlОбязателенОбязателен
Очередь сообщений Posix_POSIX_MESSAGE_PASSING_XOPEN_REALTIME
Семафоры Posix_POSIX_SEMAPHORES__XOPEN_REALTIME
Память с общим доступом Posix_POSIX_SHARED_MEMORY_OBJECTS_XOPEN_REALTIME
Очередь сообщений System V(He определен)Обязателен
Семафор System V(He определен)Обязателен
Память с общим доступом System V(He определен)Обязателен
Двери (doors)(He определен)(Не определен)
Удаленный вызов процедур Sun(He определен)(Не определен)
Отображение памяти mmap_POSIX_MAPPED_FILES или POSIX_SHARED_MEMORY_OBJECTSОбязателен
Сигналы реального времени (realtime signals)_POSIX_REALTIME_SIGNALS_XOPEN_REALTIME

1.5. Действие команд fork, exec и exit на объекты IPC

Нам нужно достичь понимания действия функций fork, exec и _exit на различные формы IPC, которые мы обсуждаем (последняя из перечисленных функций вызывается функцией exit). Информация по этому вопросу сведена в табл. 1.4.

Большинство функций описаны далее в тексте книги, но здесь нужно сделать несколько замечаний. Во-первых, вызов fork из многопоточного процесса (multithreaded process) приводит к беспорядку в безымянных переменных синхронизации (взаимных исключениях, условных переменных, блокировках и семафорах, хранящихся в памяти). Раздел 6.1 книги [3] содержит необходимые детали. Мы просто отметим в добавление к таблице, что если эти переменные хранятся в памяти с общим доступом и создаются с атрибутом общего доступа для процессов, они будут доступны любому процессу, который может обращаться к этой области памяти. Во-вторых, три формы IPC System V не могут быть открыты или закрыты. Из листинга 6.6 и упражнений 11.1 и 14.1 видно, что все, что нужно знать, чтобы получить доступ к этим трем формам IPC, — это идентификатор. Поэтому они доступны всем процессам, которым известен этот идентификатор, хотя для семафоров и памяти с общим доступом требуется некая особая обработка.


Таблица 1.4. Действие fork, exec и _exit на IPC

Тип IPCforkexec_exit
Неименованные и именованные каналыПорожденный процесс получает копии всех дескрипторов родительского процессаВсе открытые дескрипторы остаются открытыми, если для них не установлен бит FD_CLOEXECВсе открытые дескрипторы закрываются, данные из программного канала и FIFO удаляются после последнего закрытия
Очереди сообщений PosixПорожденный процесс получает копии всех открытых родительских процессовВсе открытые дескрипторы очередей сообщений закрываютсяВсе открытые дескрипторы очередей сообщений закрываются
Очереди сообщений System VНе действуетНе действуетНе действует
Взаимные исключения и условные переменные PosixОбщий доступ, если используется разделяемая память с атрибутом разделения между процессамиИсчезает, если не хранится в разделяемой памяти, которая остается открытой и имеет атрибут разделенияИсчезает, если не находится в разделяемой памяти, которая остается открытой и имеет атрибут разделения
Блокировки чтения-записи PosixОбщий доступ, если используется память с общим доступом и атрибутом разделения между процессамиИсчезает, если не хранится в разделяемой памяти, которая остается открытой и имеет атрибут разделенияИсчезает, если не хранится в разделяемой памяти, которая остается открытой и имеет атрибут разделения
Семафоры Posix, хранящиеся в памятиОбщий доступ, если используется память с общим доступом и атрибутом разделения между процессамиИсчезает, если не хранится в разделяемой памяти, которая остается открытой и имеет атрибут разделенияИсчезает, если не хранится в разделяемой памяти, которая остается открытой и имеет атрибут разделения
Именованные семафоры PosixВсе открытые в родительском процессе остаются открытыми в порожденномВсе открытые закрываютсяВсе открытые закрываются
Семафоры System VВсе значения semadj в порожденном процессе устанавливаются в 0Все значения semadj передаются новой программеВсе значения semadj добавляются к значению соответствующего семафора
Блокировка записей fcntlБлокировки в родительском процессе не наследуются порожденным процессомБлокировки не изменяются до тех пор, пока не закроется дескрипторВсе несброшенные блокировки, установленные процессом, снимаются
Отображение памятиОтображения памяти родительского процесса сохраняются в порожденномОтображения памяти сбрасываются (unmap)Отображения памяти сбрасываются
Разделяемая память PosixОтображения памяти родительского процесса сохраняются в порожденномОтображения памяти сбрасываютсяОтображения памяти сбрасываются
Разделяемая память System VПрисоединенные сегменты разделяемой памяти остаются присоединенными в порожденном процессеПрисоединенные сегменты разделяемой памяти отсоединяютсяПрисоединенные сегменты разделяемой памяти отсоединяются
Двери (doors)Порожденный процесс получает копии всех открытых дескрипторов родительского процесса, но только родительский процесс является сервером при активизации дверей через дескрипторыВсе дескрипторы дверей должны быть закрыты, потому что они создаются с установленным битом FD_CLOEXECВсе открытые дескрипторы закрываются

1.6. Обработка ошибок: функции-обертки

В любой реальной программе при любом вызове требуется проверка возвращаемого значения на наличие ошибки. Поскольку обычно работа программ при возникновении ошибок завершается, мы можем сократить объем текста, определив функции-обертки (wrapper functions), которые осуществляют собственно вызов функции, проверяют возвращаемое значение и завершают работу при возникновении ошибок. В соответствии с соглашениями имена функций-оберток совпадают с именами самих функций, за исключением первой буквы, которая делается заглавной, например

Sem_post(ptr);

Пример функции-обертки приведен в листинге 1.1[1]

Листинг 1.1. Функция-обертка к функции sem_post

// lib/wrapunix.c

387 void

388 Sem_post(sem_t *sem)

389 {

390  if (sem_post(sem) == –1)

391   err_sys("sem_post error");

392 }

Если в тексте вы встретите имя функции, начинающееся с заглавной буквы, знайте: это наша собственная функция-обертка. Она вызывает функцию с тем же именем, начинающимся со строчной буквы. Функция-обертка приводит к завершению работы процесса с выводом сообщения об ошибке, если таковая возникает.

При описании исходного кода, включенного в книгу, мы всегда говорим о вызываемой функции самого низкого уровня (например, sem_post), а не о функции-обертке (например, Sem_post). Аналогично в алфавитном указателе приведены имена самих функций, а не оберток к ним.

ПРИМЕЧАНИЕ

Вышеприведенный формат исходного кода используется во всем тексте. Все непустые строки нумеруются. Текст, описывающий разделы кода, начинается с номеров первой и последней строк на пустом поле слева. Иногда перед абзацем текста присутствует краткий заголовок, набранный полужирным шрифтом, излагающий основное содержание описываемого кода.

В начале кода указывается имя исходного файла. В данном примере — это файл wrapunix.c в каталоге lib. Поскольку исходный код всех примеров этой книги распространяется свободно (см. предисловие), вы можете легко найти требуемый файл. Компиляция, выполнение и особенно изменение этих программ в процессе чтения книги — лучший способ изучить концепции взаимодействия процессов.

Хотя может показаться, что использовать такие функции-обертки не слишком выгодно, вы избавитесь от этого заблуждения в главе 7, где мы обнаружим, что функции для работы с потоками (thread functions) не присваивают значение стандартной переменной Unix errno при возникновении ошибки; вместо этого код ошибки просто возвращается функцией. Это означает, что при вызове функции pthread мы должны каждый раз выделять память под переменную, сохранять в ней возвращаемое функцией значение, а затем устанавливать значение переменной errno равным этой переменной, прежде чем вызывать функцию err_sys (листинг В.4). Чтобы не загромождать текст фигурными скобками, мы используем оператор языка Си «запятая» (comma) и совмещаем присваивание значения переменной errno и вызов err_sys в одном операторе, как в нижеследующем примере:

int n;

if ((n = pthread_mutex_lock(&ndone_mutex))!=0) errno=n, err_sys("pthread_mutex_lock error");

Альтернативой является определение новой функции обработки ошибок, принимающей код ошибки в качестве аргумента. Однако мы можем сделать этот фрагмент кода гораздо более читаемым, записав

Pthread_mutex_lock(&ndone_mutex);

где используется наша собственная функция-обертка, приведенная в листинге 1.2.

Листинг 1.2. Реализация обертки к функции pthread_mutex_lock

//lib/wrappthread.c

125 void

126 Pthread_mutex_lock(pthread_mutex_t *mptr)

127 {

128  int n;

129  if ((n=pthread_mutex_lock(mptr))==0)

130   return;

131  errno=n;

132  err_sys("pthread_mutex_lock error");

133 }

ПРИМЕЧАНИЕ

Аккуратно используя возможности языка Си, мы могли бы применять макросы вместо функций, что увеличило бы скорость выполнения программ, но эти функции-обертки редко бывают (если вообще бывают) узким местом.

Наше соглашение о замене первой буквы имени функции на заглавную является компромиссом. Рассматривалось много других форм записи: использование префикса е ([10, с. 182]), суффикса _е и т. д. Наш вариант кажется наименее отвлекающим внимание и одновременно дающим визуальное указание на то, что вызывается какая-то другая функция.

Этот метод имеет побочное полезное свойство: проверяются ошибки, возвращаемые функциями, код возврата которых обычно игнорируется, например close и pthread_ mutex_lock.

Далее в тексте книги мы будем использовать эти функции-обертки, если только не потребуется явно проверить наличие ошибки и обработать ее произвольным образом, отличным от завершения процесса. Мы не приводим в книге исходный код для всех оберток, но он свободно доступен в Интернете (см. предисловие).

Значение errno

При возникновении ошибки в функции Unix глобальной переменной errno присваивается положительное значение, указывающее на тип ошибки; при этом функция обычно возвращает значение –1. Наша функция err_sys выводит соответствующее коду ошибки сообщение (например, Resource temporarily unavailable — ресурс временно недоступен, — если переменная errno имеет значение EAGAIN).

Функция присваивает значение переменной errno только при возникновении ошибки. В случае нормального завершения работы значение этой переменной не определено. Все положительные значения соответствуют константам с именами из заглавных букв, начинающимися с Е, определяемым обычно в заголовочном файле . Отсутствию ошибок соответствует значение 0. 

При работе с несколькими потоками в каждом из них должна быть собственная переменная errno. Выделение переменной каждому потоку происходит автоматически, однако обычно это требует указания компилятору на то, что должна быть возможность повторного входа в программу. Задается это с помощью ключей –D_REENTRANT или –D_POSIX_C_SOURCE=199506L или аналогичных. Часто в заголовке переменная errno определяется как макрос, раскрываемый в вызов функции, если определена константа _REENTRANT. Функция обеспечивает доступ к копии errno, относящейся к данному потоку.

Далее в тексте мы используем выражения наподобие «функция mq_send возвращает EMSGSIZE», означающие, что функция возвращает ошибку (обычно возвращаемое значение при этом равно –1) и присваивает переменной errno значение указанной константы.

1.7. Стандарты Unix

В настоящее время стандарты Unix определяются Posix и The Open Group.

Posix

Название Posix образовано от «Portable Operating System Interface», что означает приблизительно «интерфейс переносимых операционных систем». Это не один стандарт, а целое семейство, разработанное Институтом инженеров по электротехнике и радиоэлектронике (Institute for Electrical and Electronics Engineers — IEEE). Стандарты Posix были также приняты в качестве международных стандартов ISO (International Organization for Standardization, Международная организация по стандартизации) и IEC (International Electrotechnical Commission, Международная электротехническая комиссия), или ISO/IEC. Стандарты Posix прошли несколько стадий разработки.

■ Стандарт IEEE 1003.1-1988 (317 страниц) был первым стандартом Posix. Он определял интерфейс взаимодействия языка С с ядром Unix-типа в следующих областях: примитивы для реализации процессов (вызовы fork, exec, сигналы и таймеры), среда процесса (идентификаторы пользователей, группы процессов), файлы и каталоги (все функции ввода-вывода), работа с терминалом, базы данных системы (файлы паролей и групп), форматы архивов tar и cpio.

ПРИМЕЧАНИЕ

Первый стандарт Posix вышел в рабочем варианте под названием IEEEIX в 1986 году. Название Posix было предложено Ричардом Штолманом (Richard Stallman). 

■ Затем вышел стандарт IEЕЕ 1003.1-1990 (356 страниц). Он одновременно являлся и международным стандартом ISO/IEC 9945-1:1990. По сравнению с версией 1988 года изменения в версии 1990 года были минимальными. К заголовку было добавлено: «Part 1: System Application Program Interface (API) [C Language]» («Часть 1: Системный интерфейс разработки программ (API) [Язык С])», и это означало, что стандарт описывал программный интерфейс (API) языка С. 

■ IEEE 1003.2-1992 вышел в двух томах общим объемом около 1300 страниц, и его заголовок содержал строку «Part 2: Shell and Utilities» (Часть 2: «Интерпретатор и утилиты»). Эта часть определяла интерпретатор (основанный на Bourne shell в Unix System V) и около ста утилит (программ, обычно вызываемых из интерпретатора — от awk и basename до vi и уасс). В настоящей книге мы будем ссылаться на этот стандарт под именем Posix. 2.

■ IEEE 1003.1b-1993 (590 страниц) изначально был известен как IEEE P1003.4. Этот стандарт представлял собой дополнение к стандарту 1003.1-1990 и включал расширения реального времени, разработанные рабочей группой Р1003.4: синхронизацию файлов, асинхронный ввод-вывод, семафоры, управление памятью, планирование выполнения (scheduling), часы, таймеры и очереди сообщений.

■ IEEE 1003.1, издание 1996 года [8] (743 страницы), включает 1003.1-1990 (базовый интерфейс API), 1003.1b-1993 (расширения реального времени), 1003.1-1995 (Pthreads — программные потоки Posix) и 1003.1i-1995 (технические поправки к 1003.1b). Этот стандарт также называется ISO/IEC 9945-1: 1996. В него были добавлены три главы о потоках и дополнительные разделы, касающиеся синхронизации потоков (взаимные исключения и условные переменные), планирование выполнения потоков, планирование синхронизации. В настоящей книге мы называем этот стандарт Posix.1.

ПРИМЕЧАНИЕ

Более четверти из 743 страниц стандарта представляли собой приложение, озаглавленное «Rationale and Notes» («Обоснование и примечания»). Это обоснование содержит историческую информацию и объяснение причин, по которым некоторые функции были или не были включены в стандарт. Часто обоснование оказывается не менее полезным, чем собственно стандарт.

К сожалению, стандарты IEEE не являются свободно доступными через Интернет. Информация о том, где можно заказать книгу, дана в библиографии под ссылкой [8]. Обратите внимание, что семафоры были определены в стандарте расширений реального времени, отдельно от взаимных исключений и условных переменных (которые были определены в стандарте Pthreads), что объясняет некоторые различия в интерфейсах API этих средств.

Наконец, заметим, что блокировки чтения-записи не являются частью стандартов Posix. Об этом более подробно рассказано в главе 8. 

В будущем планируется выход новой версии IEEE 1003.1, включающей стандарт P1003.1g, сетевые интерфейсы (сокеты и XTI), которые описаны в первом томе этой книги.

В предисловии стандарта Posix.1 1996 года утверждается, что стандарт ISO/IEC 9945 состоит из следующих частей:

1. Системный интерфейс разработки программ (API) (язык С).

2. Интерпретатор и утилиты.

3. Администрирование системы (в разработке).

Части 1 и 2 представляют собой то, что мы называем Posix.1 и Posix.2. 

Работа над стандартами Posix постоянно продолжается, и авторам книг, с ними связанных, приходится заниматься стрельбой по движущейся мишени. О текущем состоянии стандартов можно узнать на сайте http://www.pasc.org/standing/sd11.html.

The Open Group

The Open Group (Открытая группа) была сформирована в 1996 году объединением X/Open Company (основана в 1984 году) и Open Software Foundation (OSF, основан в 1988 году). Эта группа представляет собой международный консорциум производителей и потребителей из промышленности, правительства и образовательных учреждений. Их стандарты тоже выходили в нескольких версиях:

■ В 1989 году Х/Open опубликовала 3-й выпуск X/Open Portability Guide (Руководство по разработке переносимых программ) — XPG3.

■ В 1992 году был опубликован четвертый выпуск (Issue 4), а в 1994 году — вторая его версия (Issue 4, Version 2). Последняя известна также под названием Spec 1170, где магическое число 1170 представляет собой сумму количества интерфейсов системы (926), заголовков (70) и команд (174). Есть и еще два названия: X/Open Single Unix Specification (Единая спецификация Unix) и Unix 95.

■ В марте 1997 года было объявлено о выходе второй версии Единой спецификации Unix. Этот стандарт программного обеспечения называется также Unix 98, и именно так мы ссылаемся на эту спецификацию далее в тексте книги. Количество интерфейсов в Unix 98 возросло с 1170 до 1434, хотя для рабочей станции это количество достигает 3030, поскольку в это число включается CDE (Common Desktop Environment — общее окружение рабочего стола), которое, в свою очередь, требует системы X Window System и пользовательского интерфейса Motif. Подробно об этом написано в книге [9]. Полезную информацию можно также найти по адресу http://www.UNIX-systems.org/version2.

ПРИМЕЧАНИЕ

С этого сайта можно свободно скачать единую спецификацию Unix практически целиком.

Версии Unix и переносимость

Практически все версии Unix, с которыми можно столкнуться сегодня, соответствуют какому-либо варианту стандарта Posix.1 или Posix.2. Мы говорим «какому-либо», потому что после внесения изменений в Posix (например, Добавление расширений реального времени в 1993 и потоков в 1996) производителям обычно требуется год или два, чтобы подогнать свои программы под эти стандарты.

Исторически большинство систем Unix являются потомками либо BSD, либо System V, но различия между ними постепенно стираются, по мере того как производители переходят к использованию стандартов Posix. Основные различия лежат в области системного администрирования, поскольку ни один стандарт Posix на данный момент не описывает эту область.

В большинстве примеров этой книги мы использовали операционные системы Solaris 2.6 и Digital Unix 4.0B. Дело в том, что на момент написания книги (конец 1997 — начало 1998 года) только эти две операционные системы поддерживали System V IPC, Posix IPC и программные потоки Posix (Pthreads).

1.8. Комментарий к примерам IPC

Чаще всего для иллюстрации различных функций в книге используются три шаблона (модели) взаимодействия:

1. Сервер файлов: приложение клиент-сервер, причем клиент посылает серверу запрос с именем файла, а сервер возвращает клиенту его содержимое.

2. Производитель-потребитель: один или несколько потоков или процессов (производителей) помещают данные в буфер общего пользования, а другие потоки или процессы (потребители) производят с этими данными различные операции.

3. Увеличение последовательного номера: один или несколько потоков или процессов увеличивают общий для всех индекс. Число это может храниться в файле с общим доступом или в совместно используемой области памяти.

Первый пример иллюстрирует различные формы передачи сообщений, а других два — разнообразные виды синхронизации и использования разделяемой памяти.

Таблицы 1.5, 1.6 и 1.7 представляют собой своего рода путеводитель по разрабатываемым нами программам на различные темы, изложенные в книге. В этих таблицах кратко описаны сами программы и указаны номера соответствующих листингов.

1.9. Резюме

Взаимодействие процессов традиционно является одной из проблемных областей в Unix. По мере развития системы предлагались различные решения, и ни одно из них не было совершенным. Мы подразделяем IPC на четыре главных типа.

1. Передача сообщений (каналы, FIFO, очереди сообщений).

2. Синхронизация (взаимные исключения, условные переменные, блокировки чтения-записи, семафоры).

3. Разделяемая память (неименованная и именованная).

4. Вызов процедур (двери в Solaris, RPC Sun).

Мы рассматриваем взаимодействие как отдельных потоков одного процесса, так и нескольких независимых процессов.

Живучесть каждого типа IPC определяется либо процессом, либо ядром, либо файловой системой в зависимости от продолжительности его существования. При выборе типа IPC для конкретного применения нужно учитывать его живучесть.

Другим свойством каждого типа IPC является пространство имен, определяющее идентификацию объектов IPC процессами и потоками, использующими его. Некоторые объекты не имеют имен (каналы, взаимные исключения, условные переменные, блокировки чтения-записи), другие обладают именами в рамках файловой системы (каналы FIFO), третьи характеризуются тем, что в главе 2 названо «именами IPC стандарта Posix», а четвертые — еще одним типом имен, который описан в главе 3 (ключи или идентификаторы IPC стандарта System V). Обычно сервер создает объект IPC с некоторым именем, а клиенты используют это имя для получения доступа к объекту.

В исходных кодах, приведенных в книге, используются функции-обертки, описанные в разделе 1.6, позволяющие уменьшить объем кода, обеспечивая, тем не менее, проверку возврата ошибки для любой вызываемой функции. Имена всех функций-оберток начинаются с заглавной буквы.

Стандарты IEEE Posix — Posix.1, определяющий основы интерфейса С в Unix, и Posix.2, определяющий основные команды, — это те стандарты, к которым движутся большинство производителей. Однако стандарты Posix в настоящее время быстро поглощаются (включаются в качестве части) и расширяются коммерческими стандартами, в частности The Open Group (Unix 98).


Таблица 1.5. Версии модели клиент-сервер  

ЛистингОписание
4.1Два канала между родительским и порожденным процессами
4.5Использует popen и cat
4.6Использует два канала FIFO между родительским и порожденным процессами
4.7Два канала FIFO между независимым сервером и неродственным клиентом
4.10Каналы FIFO между независимым последовательным сервером и несколькими клиентами
4.12Программный канал или FIFO: формирование записей в потоке байтов
6.7Две очереди сообщений System V
6.12Одна очередь сообщений System V с несколькими клиентами
6.16Одна очередь сообщений System V для каждого клиента; клиентов несколько
15.15Передача дескриптора через дверь

Таблица 1.6. Версии модели производитель-потребитель

ЛистингОписание
7.1Взаимное исключение, несколько производителей, один потребитель
7.5Взаимное исключение и условная переменная, несколько производителей, один потребитель
10.8Именованные семафоры Posix, один производитель, один потребитель
10.11Семафоры Posix в памяти, один производитель, один потребитель
10.12Семафоры Posix в памяти, несколько производителей, один потребитель
10.15Семафоры Posix в памяти, несколько производителей, несколько потребителей
10.18Семафоры Posix в памяти, один производитель, один потребитель: несколько буферов

Таблица 1.7. Версии программы с увеличением последовательного номера

ЛистингОписание
9.1Индекс в файле, без блокировки
9.3Индекс в файле, блокировка с помощью fcntl
9.9Индекс в файле, блокировка с использованием функции open
10.10Индекс в файле, блокировка с помощью именованного семафора Posix
12.2Индекс в общей памяти mmap, блокировка с помощью именованного семафора Posix
12.3Индекс в общей памяти mmap, блокировка с помощью семафора Posix в памяти
12.4Индекс в неименованной общей памяти 4.4BSD, блокировка с помощью именованного семафора Posix
12.5Индекс в общей памяти SVR4 /dev/zero, блокировка с помощью именованного семафора Posix
13.6Индекс в общей памяти Posix, блокировка с помощью семафора Posix в памяти
А.19Измерение производительности: блокировка взаимным исключением между потоками
А.22Измерение производительности: блокировка чтения-записи между потоками
А.23Измерение производительности: блокировка между потоками с помощью семафоров Posix в памяти
А.25Измерение производительности: блокировка между потоками с помощью именованных семафоров Posix
А.28Измерение производительности: блокировка между потоками с помощью семафоров System V
А.29Измерение производительности: блокировка между потоками с помощью fcntl
А.33Измерение производительности: блокировка между процессами с помощью взаимных исключений

Упражнения

1. На рис 1.1 изображены два процесса, обращающиеся к одному файлу. Если оба процесса только дописывают данные к концу файла (возможно, длинного), какой нужен будет тип синхронизации?

2. Изучите заголовочный файл в вашей системе и выясните, как определена errno.

3. Дополните табл. 1.3 используемыми вами функциями, поддерживаемыми Unix-системами.

ГЛАВА 2