Уродливая Вселенная. Как поиски красоты заводят физиков в тупик — страница 13 из 55

ено.

Я знаю, трудно представить себе искривленное четырехмерное пространство-время – дело тут не только в вас. К счастью, для многих целей двумерные поверхности служат неплохими аналогиями. Специальная теория относительности обращается с пространством-временем как с плоским листом бумаги. Тогда как в общей теории относительности пространство-время имеет возвышения и впадины.

Продолжим эту аналогию: если у вас есть карта гористой местности без отметок высоты, серпантины на ней будут выглядеть абсурдно. Но если вы знаете, что там горы, то понимаете, почему дороги столь извилисты – при таком ландшафте это наилучшее решение. Вот и то, что мы не видим искривления пространства-времени, сродни обладанию картой без отметок высоты. Если бы вы могли видеть искривления пространства-времени, вы бы поняли, что для планет в высшей степени целесообразно обращаться вокруг Солнца. Это лучшее, что они могут.

Общая теория относительности основывается на тех же симметриях, что и специальная. Разница в том, что в общей теории относительности пространство-время становится податливым: оно откликается на энергию и вещество, искривляясь. В свою очередь, перераспределение энергии и движение вещества зависят от кривизны пространства-времени.

Но кривизна меняется не только от точки к точке, а еще и со временем. Стало быть, самое важное, чему нас научила общая теория относительности, состоит в том, что Вселенная не вечно неизменна, она расширяется в ответ на вещество, и по мере этого расширения вещество становится все более тонко распределенным.

Тот факт, что Вселенная расширяется, означает, что в прошлом вещество было сильно сжато. Значит, ранняя Вселенная была наполнена очень плотным, но почти гомогенным «супом» из частиц. Притом очень горячим, то есть средняя энергия столкновений отдельных частиц была высокой. Возникает проблема: если температура превышает примерно 1017 кельвинов[43], то средняя энергия столкновений превышает ту, что позволяет исследовать сейчас Большой адронный коллайдер. Для более высоких температур – а значит, для более ранней Вселенной – у нас нет надежных знаний о поведении материи. У нас, конечно, имеются кое-какие предположения, и мы поговорим о некоторых из них в пятой и девятой главах. Но пока давайте сосредоточимся на том, что творится ниже этой температуры, где согласованная космологическая модель в силах объяснить, что же именно происходит.

Общая теория относительности дает нам уравнения, которые связывают расширение Вселенной с видами заключенных в ней энергии и вещества. Таким образом, космологи могут выяснить состав Вселенной, перебирая различные комбинации вещества и энергии и отслеживая, которая из них лучше всего объясняет наблюдения (точнее, космологи предоставляют это компьютеру). Они повторяют процедуру каждый раз, как появляются новые наблюдательные данные. И какие же сюрпризы они обнаружили!

Самое шокирующее открытие состоит в том, что основной источник гравитации во Вселенной в наши дни не имеет ничего общего со всем, с чем мы когда-либо сталкивались. Это неизвестный тип энергии, названный «темной энергией», и он составляет ошеломляющие 68,3 % общего запаса энергии-вещества. Мы не знаем, обладает ли темная энергия микроскопической структурой, знаем только, какой эффект она дает. Темная энергия ускоряет расширение Вселенной. Вот почему нам ее нужно так много – данные свидетельствуют, что скорость расширения Вселенной растет. Однако темная энергия тоже очень тонко распределена, и потому мы не в силах детектировать ее в непосредственной близости от себя. Лишь на огромных расстояниях мы замечаем результирующее влияние, выражающееся в разгоне расширения Вселенной.

Простейший тип темной энергии – космологическая постоянная, лишенная какой-либо подструктуры и неизменная как в пространстве, так и во времени. Космологическая постоянная – это то, что используется в согласованной космологической модели в качестве темной энергии, однако темная энергия может быть и чем-то более сложным.

Оставшиеся 31,7 % наполнения Вселенной – это вещество, правда (еще один сюрприз!), преимущественно не тот вид вещества, что нам привычен. 85 % вещества (26,8 % общего запаса энергии-вещества) называют «темной материей». Единственное, что мы знаем о темной материи, – что она редко вступает во взаимодействие, как с самой собой, так и с другим веществом. В частности, она не взаимодействует со светом, откуда и название. Некоторые суперсимметричные частицы ведут себя так, как подобало бы темной материи, но мы до сих пор не знаем, верно ли это объяснение.

Оставшиеся 15 % вещества во Вселенной (4,9 % общего запаса энергии-вещества) составляют стабильные частицы Стандартной модели – материал, из которого вылеплены мы с вами (рис. 7).

Узнав, какие виды энергии и вещества заполняют Вселенную, мы можем воссоздать прошлое. В ранней Вселенной темной энергии (в форме космологической постоянной) было ничтожно мало по сравнению с веществом. Ведь по мере расширения Вселенной плотность вещества уменьшается, тогда как космологическая постоянная остается неизменной. Стало быть, если того и другого сегодня соизмеримо много (соотношение темной энергии и вещества примерно равно 2:1), значит, в ранней Вселенной плотность вещества должна была значительно превышать плотность энергии, выраженной космологической постоянной.


Рис. 7. Энергетический состав Вселенной (для тех, кто не жалует круговые диаграммы)


Итак, при 1017 кельвинов все начинается с «супа», состоящего в основном из вещества и темной материи. Пространство-время реагирует на это вещество, начиная расширяться. Это охлаждает «суп» и способствует формированию первых атомных ядер, а затем легких атомов. Изначально «суп» из частиц настолько густой, что в нем застревает даже свет. Но как только образуются атомы, свет получает возможность распространяться почти без помех.

Темная материя, раз она не взаимодействует со светом, охлаждается быстрее, чем обычное вещество. Следовательно, в ранней Вселенной темная материя первой начинает образовывать скопления под действием собственного гравитационного притяжения. На самом деле без исходного комкования темной материи галактики не сформировались бы так, как мы это наблюдаем, поскольку гравитационное притяжение уже скомковавшейся темной материи необходимо, чтобы ускорить комкование обычного вещества. И только когда достаточное количество обычного вещества скопилось вместе, могло начаться образование больших атомных ядер в недрах звезд.

Под воздействием гравитации на протяжении миллиардов лет формируются галактики, возникают солнечные системы, загораются звезды. И все это время Вселенная расширяется, хотя расширение и стало замедляться. Но примерно тогда, когда галактики полностью сформировались, темная энергия берет верх – и скорость расширения Вселенной начинает расти. Именно в эту фазу мы сейчас и живем. И дальше, в будущем, вещество будет только еще сильнее истончаться. А значит, если темная энергия и есть космологическая постоянная, она продолжит доминировать, а расширение Вселенной продолжит ускоряться – бесконечно.

Длина волны первых световых лучей, вырвавшихся из «супа» частиц в ранней Вселенной, увеличилась с расширением последней, но этот свет все еще здесь и сегодня. Его длина волны теперь – несколько миллиметров, она лежит далеко вне видимого диапазона, в микроволновой области. Это космическое микроволновое фоновое излучение измеримо и служит самым ценным источником информации для космологов.

Средняя температура реликтового излучения равна примерно 2,7 кельвина, не намного выше абсолютного нуля. Но существуют мельчайшие отклонения от средней температуры – примерно на 0,003 %. Они исходят из областей в ранней Вселенной, где было чуть теплее или чуть холоднее, чем в среднем. Таким образом, в температурных флуктуациях реликтового излучения зашифрованы неоднородности горячего «супа», из которого образовались галактики.

Вооруженные этим знанием, мы можем использовать реликтовое излучение, чтобы делать заключения об истории Вселенной, которые я и описала выше. Другие данные мы получаем из наблюдаемого распределения галактик, различных измерений расширения Вселенной, распространенности химических элементов и гравитационного линзирования – это если перечислить только самые важные источники информации[44].

Согласованную космологическую модель также обозначают как «Лямбда-CDM», где «лямбда» (буква греческого алфавита) – это космологическая постоянная, а CDM – Cold Dark Matter (холодная темная материя). Вместе Стандартная модель и согласованная космологическая модель на сегодняшний день составляют основания физики[45].

Дальше будет трудно

Раньше я участвовала в серии международных конференций «Суперсимметрия и объединение фундаментальных взаимодействий». С 1993 года они проходили ежегодно и в лучшее время собирали свыше пятисот участников. Каждый год в докладах восхвалялись достоинства суперсимметрии: естественность, объединяющая способность и наличие кандидатов в темную материю. Из года в год поиски суперпартнеров приносили отрицательные результаты. Из года в год модели подновляли, чтобы примирить их с отсутствием доказательств.

Безуспешность попыток доказать существование суперпартнеров в Большом адронном коллайдере отразилась на настрое теоретиков. «Пока еще не время отчаиваться… но, вероятно, уже пора впасть в уныние»54, – заметил итальянский физик Гвидо Альтарелли в 2011 году. Бен Алланах из Кембриджского университета описал свою реакцию на результаты анализа данных с Большого адронного коллайдера 2015 года так: «Несколько угнетающе для теоретика суперсимметрии вроде меня»55. Джонатан Эллис, теоретик из ЦЕРН, отозвался о вероятном сценарии, по которому Большой адронный коллайдер не найдет ничего, кроме бозона Хиггса, как о «настоящей жуткой катастрофе»