и не служат фундаментальными параметрами ни одной теории.
Но идея, что большие числа якобы требуют объяснения, укоренилась 62. В 1937 году Поль Дирак заметил, что возраст Вселенной, деленный на время преодоления светом радиуса атома водорода, приблизительно равен 6 × 1039. Примерно таково же и отношение сил электрического и гравитационного взаимодействий между электроном и протоном, равное 2,3 × 1039. Не точно такое же, да, но довольно близкое, поэтому Дирак допустил, что эти числа имеют одинаковое происхождение. И что не только эти числа должны быть связаны, а «любые два очень больших безразмерных числа, встречающиеся в Природе, связаны между собой простым математическим соотношением, в котором коэффициенты определяются порядком величины[49]».
Это утверждение стали называть гипотезой больших чисел Дирака.
Однако в своей игре с числами Дирак использовал константу, которая вообще-то константой не является, – возраст Вселенной. Это значит, что для сохранения постулированного равенства другие постоянные природы тоже должны изменяться с течением времени. В результате возник вал следствий, касающихся формирования структур во Вселенной, который привел гипотезу к несовместимости с наблюдениями 63.
В применении к конкретным величинам, которые он выбрал, гипотеза больших чисел Дирака сегодня не считается принципиально важной. Однако суть его идеи – что большие числа требуют объяснения или оно по крайней мере желательно, если несколько чисел имеют общее происхождение, – до сих пор активно используется. Так, физики заметили, что появление подозрительно больших или маленьких чисел может выдавать присутствие новых, доселе не учтенных эффектов. Это укрепило веру физиков в то, что тонкая настройка служит ярким маяком, сигнализирующим о необходимости пересмотра и переработки.
Логика аргументов о естественности напоминает попытку предсказать сюжет длинного сериала: если главный герой – в нашем случае естественность – в беде, он точно выживет, поэтому обязательно должно произойти что-то, что выправит кажущуюся безнадежной ситуацию.
В неквантованной электродинамике, например, масса электрона неестественно мала. Это потому, что электрон создает электрическое поле и энергия поля должна вносить большой (а точнее, бесконечный) вклад в его массу. Чтобы избавиться от этой «энергии самовоздействия», потребовалось бы тонко настраивать математику, а это некрасиво. И вот он, наш герой – естественность, – запертый в горящем здании. Если расчет верен, герой погибнет.
Но расчет неверен, поскольку пренебрегает квантовыми эффектами. А с их учетом электрон оказывается окруженным парами виртуальных частиц, которые рождаются и аннигилируют, не становясь непосредственно регистрируемыми. Однако же они вносят непрямой вклад, устраняющий «самовоздействующие» дефекты неквантованной теории. Малость массы электрона, таким образом, «естественна» в квантовой электродинамике[50]. Наш герой спрыгивает с крыши и приземляется в мусорный контейнер, целым и невредимым.
В физике элементарных частиц отсутствие численных случайностей обрело математическую формулировку и называется «технической естественностью»[51]. Как ни странно, вся Стандартная модель технически естественна, если не считать неприятностей с массой бозона Хиггса. Даже для составных частиц, склеенных сильным ядерным взаимодействием, все массы технически естественны, за единственным исключением: массы трех мезонов (одного нейтрального пиона и двух заряженных) подозрительно близки друг к другу. Если взять разность квадратов масс заряженного и нейтрального пионов и разделить на квадрат самих масс, результат окажется неестественно мал. Герой снова в опасности: прижатый к стене, смотрит в направленное на него в упор дуло пистолета.
Но оказывается, что и здесь расчеты не предсказывают корректно, что происходит. Выручает то, что выше определенной энергии новая физика проявляется в форме частицы – ро-мезона, – с которой приходит и новая симметрия, объясняющая, почему массы пионов так близки друг к другу. Объяснение технически естественно, никакой тонкой настройки не требуется. Пистолет дает осечку, и герой спасается.
Квантовые поправки к энергии самовоздействия электрона и поправки для ро-мезона были, однако, не предсказаниями, а постсказаниями, или можно было бы назвать их озарениями задним числом (словно при повторном просмотре кино). Единственное настоящее предсказание, основанное на естественности, относится к очарованному кварку, открытому четвертым по счету. Его существование было предсказано в 1970 году – чтобы объяснить, почему вероятности некоторых взаимодействий частиц неестественно малы 64. С учетом очарованного кварка эти взаимодействия стали попросту запрещены, так что их ненаблюдаемость получила естественное объяснение, без всякой тонкой настройки.
Итак, естественность Стандартной моделью соблюдается и имеет на своем счету одно предсказание. На этом основании Натан Зайберг из Института перспективных исследований в Принстоне утверждает, что «понятие естественности служило ориентиром в физике на протяжении пары последних столетий»65. А стало быть, противоположность естественности, тонкая настройка, стала отвратительной. По словам Лизы Рэндалл из Гарвардского университета, «тонкая настройка почти наверняка есть акт отчаяния, отражающий наше невежество»66[52]. Или, как сказал мне Говард Бэр, специалист по физике элементарных частиц: «Полагаю, что тонкая настройка – это просто недуг в теориях, с которым приходится разбираться и который указывает вам на то, как эти теории можно вылечить и какой путь в Великое Неизвестное, к рубежам познаваемого, правильный»67.
Космологическая постоянная неестественна. Но она имеет отношение к гравитации, поэтому специалисты по физике элементарных частиц не чувствуют за нее ответственности. Теперь, когда мы знаем, что и масса бозона Хиггса неестественна, проблема прямо у порога.
Никто и не обещал розового сада
«Я не защитник естественности, – говорит Нима. – Естественность – не принцип, не закон. Ее считают неким проводником. Иногда это был хороший проводник, иногда плохой. Мы должны быть открыты возможностям. Кто-то говорит, что естественность – это чистая философия, но это определенно не философия. Она много для нас сделала».
Он перебирает примеры, говорящие в пользу естественности, добросовестно упоминая и то, что свидетельствует против нее, и заключает: «Естественность не была – и не должна была быть – доводом в пользу Большого адронного коллайдера. К чести ЦЕРН надо сказать, что этот довод пришел от теоретиков. Однако не так уж глупо было думать, что естественность окажется правильной концепцией. Ведь были же у нее все эти успехи».
Несмотря на успехи естественности, Нима, рассказывает он дальше, десять лет назад отказался от естественной красоты в пользу новой идеи под названием «расщепленная суперсимметрия». Это вариант SUSY, когда некоторые из ожидаемых суперсимметричных партнеров по своей природе настолько тяжелы, что находятся вне досягаемости Большого адронного коллайдера. Это объясняет, почему суперсимметричные партнеры до сих пор не были обнаружены. Но тогда расщепленная суперсимметрия нуждается в тонкой настройке – чтобы получить правильную наблюдаемую массу бозона Хиггса.
О реакции своих коллег на необходимость тонко настраивать теорию Нима вспоминает: «Я буквально орал на людей на конференциях. Такого со мной никогда не случалось ни до, ни после».
Вот что происходит, думаю я, если ты не отвечаешь критерию красоты своего времени.
«Большой адронный коллайдер изменил ваши представления о естественности?» – спрашиваю я.
«Забавно: ходит популярная байка, что, мол, теоретики до запуска Большого адронного коллайдера были абсолютно уверены, что суперсимметрия явит себя, а тут такой провал. Думаю, те, кто профессионально занимается разработкой моделей, лучшие, я считаю, люди в нашей области, обеспокоились уже после Большого электрон-позитронного коллайдера. Но все обернулось программой, как избегать [конфликта с имеющимися данными]. Страшного ничего не было, но не давали покоя всякие мелочи. Лучшие люди, они отнюдь не были уверены, что суперсимметрия обнаружится на Большом адронном коллайдере. И качественно ничего с 2000 года (когда завершился последний запуск Большого электрон-позитронного коллайдера) не изменилось. Какие-то бреши были заткнуты, но ничего не изменилось качественно».
«Вы спрашиваете, – продолжает Нима, – почему над естественностью по-прежнему работают? Вообще это очень забавно. Как я сказал, лучшие люди довольно хорошо понимали, что происходит. Они не балбесничали в ожидании, когда же из Большого адронного коллайдера посыплются глюино[53]. И еще они довольно спокойно отреагировали на данные».
Однако же ни один из этих «лучших людей» не высказался, не назвал ерундой эту расхожую историю, согласно которой у Большого адронного коллайдера якобы были неплохие шансы засечь суперсимметрию или частицы темной материи. Даже не знаю, что хуже: ученые, верящие в доводы о красоте, или ученые, умышленно вводящие общественность в заблуждение насчет перспективности дорогостоящих экспериментов.
Нима продолжает: «Люди, которые были убеждены, что суперсимметрия проявится, теперь уверены, что этого не будет. Сейчас есть те, кто говорит, что они подавлены, встревожены или напуганы. Да кому не плевать на вас и вашу маленькую жизнь? Кроме вас самих, конечно».
Он говорит не обо мне, но мог бы, думаю, сказать такое и про меня. Вдруг я попросту ищу оправдания тому, что покинула университетскую среду, поскольку разочарована, не способна сохранять воодушевление на фоне всех этих нулевых результатов? И какую же дивную я нашла отговорку – обвинять научное сообщество в дурном обращении с научным методом!