«Кун куда радикальнее, – говорит Вайнберг. – Ясно, что революция взывает к ниспровержению чего-то. Кун представил это как ниспровержение всего, так что одно поколение не может понять физику предыдущего. Я думаю, это не так. Но понятно, что если происходит научная революция, то что-нибудь да ниспровергается».
Он умолкает ненадолго, а затем добавляет: «Думаю, мысль, что это могут быть эстетические критерии, неплоха. Например, коперниканская революция произошла потому, что Коперник считал гелиоцентрическую систему гораздо более привлекательной, чем птолемеевская. А не из-за каких-либо данных. Очевидно, что это было эстетическое суждение, которое отличалось от прежних. И я полагаю, ньютоновская революция могла произойти потому, что Ньютон не считал силу, действующую на расстоянии, ужасной, как думал Декарт. Потому Декарт и пытался сложить очень уродливую картинку Солнечной системы, где все было результатом непосредственных действий тяни-толкай, а Ньютона устраивала сила, действующая на расстоянии обратно пропорционально его квадрату. То был сдвиг в эстетике. Или, можно сказать, смена философских предубеждений, что почти то же самое». Секунду-другую Вайнберг молчит, а потом бормочет, почти про себя: «Да, интересная идея. Нужно взглянуть на эту книгу».
«Но если это так, – говорю я, возвращаясь к тезису Макаллистера, – если при революции нужно ниспровергать понятие красоты в разработке теорий, то какой толк в том, чтобы использовать концепции красоты из прошлого?»
«Скажем так: красота – это просто средство, помогающее найти успешные теории, – говорит Вайнберг. – Когда ваше восприятие красоты меняется, теории тем не менее могут остаться верными». Он приводит пример: «Полагаю, Максвелл мог чувствовать, что по-настоящему удовлетворительной теорией электромагнетизма была бы та, что включала бы в себя напряжения в среде, подверженной вибрациям, и это объяснило бы колебания электрического и магнитного полей, наблюдаемые в луче света. Благодаря работам Максвелла и других ученых, включая Хевисайда, мы стали думать об электрическом и магнитном полях как просто о пронизывающих пустое пространство, а колебания – это попросту колебания самих полей, а не среды. Однако уравнения, разработанные Максвеллом, до сих пор хороши. Теория Максвелла живет, несмотря на то что его концепция, почему теория должна быть верна, изменилась».
Вайнберг продолжает: «Очень часто меняются не сами физические теории, а наше восприятие того, что они значат, почему должны быть верны. Поэтому я и не думаю, что ниспровергается все, хотя могут ниспровергаться прежние эстетические критерии. А что выживает – так это теории, порожденные прежними эстетическими критериями. Если эти теории успешны, каковыми они могут и не быть».
Он встает и выходит из кабинета.
Квантовая механика – это магия
Странна не только квантовая механика сама по себе, но и вся эта область исследований. В физике элементарных частиц у нас есть теория, эксперимент и – посередке – феноменология. Феноменологи – это те, кто (как Горди Кейн) вытягивают из теорий предсказания, обычно упрощая математику и выясняя, что может быть измерено, с какой точностью и как (а нередко еще и кем).
В других областях физики исследователи не разделяются по этим трем категориям так четко, как в физике элементарных частиц. Но во всех областях есть феноменологи. Даже в квантовой гравитации, где нет экспериментов, феноменологи есть. Иное дело – квантовая механика. Тут на одной стороне эксперимент, куча экспериментов. А на другой – много суеты из-за интерпретации. Серединка же практически пуста.
Поизучав все эти интерпретации и попытавшись оценить степень безобразности каждой из них, я решаю поговорить с кем-то из «несуетливого» лагеря, для кого все эти квантовые дела – каждодневная рутина. Мой выбор пал на Чеда Орзела.
Чед – профессор физики в Юнион-колледже в Скенектади (штат Нью-Йорк). Он больше известен как тот, кто обучал свою собаку квантовой физике и написал об этом книгу 109. Еще Чед ведет научно-популярный блог «Неопределенные принципы» (Uncertain Principles), в котором раскрывает тайны квантовой механики. Я вызываю его на сеанс видеосвязи, чтобы спросить, что он думает обо всех интерпретациях квантовой механики.
«Чед, – начинаю я, – напомните, чем вы занимаетесь».
«Я специализируюсь на физике лазерного охлаждения и холодного атома», – отвечает Чед. После того как Чед получил ученую степень, он работал над конденсатом Бозе – Эйнштейна, облаком атомов, охлажденных до столь низких температур, что становятся сильны квантовые эффекты.
«Для своей диссертации я наблюдал за столкновениями ультрахолодных атомов ксенона, – говорит Чед. – Их относительные скорости лежат в диапазоне сантиметров или миллиметров в секунду, и при таких скоростях атомы двигаются настолько медленно, что вы начинаете видеть при столкновениях квантовые эффекты».
«У ксенона много изотопов[76], – объясняет Чед. – Некоторые являются составными бозонами, а некоторые – составными фермионами. И если вы их поляризуете, а они фермионы, то столкновения станут невозможны, поскольку получатся два симметричных состояния, что запрещено».
Эта блокировка – пример страшного индивидуализма фермионов, обсуждавшегося в первой главе. Вы просто не в силах заставить два фермиона делать одно и то же в одном и том же месте.
Чед продолжает: «Мы формируем облако из атомов ксенона, и если они сталкиваются, то обмениваются большим количеством энергии – и образуется ион. Мы просто считаем ионы в двух случаях – когда атомы поляризованы и когда не поляризованы, и это говорит нам, сколько атомов участвовало в столкновениях. Сигнал очень четкий. А по частоте столкновений мы видим разницу: бозоны охотно сталкиваются, а фермионы нет. Это чистый квантовый эффект».
«А что атомы делают, если не сталкиваются?» – спрашиваю я.
«Просто проходят друг мимо друга, – отвечает Чед и пожимает плечами. – На защите диссертации кто-то задал мне такой вопрос: “Что произойдет, если вы выстроите эти атомы в ряд, – как они смогут не сталкиваться?” Ну я и сказал в шутку: “Квантовая механика – это магия”. Более серьезный ответ: не стоит думать об атомах как о маленьких бильярдных шариках, которые можно идеально выстроить в линеечку, о них нужно думать как о больших размытых объектах, способных проходить друг сквозь друга. Я повернулся тогда к моему научному руководителю, только что получившему Нобелевскую премию[77], и спросил: “Вы согласны? Это так?” И он ответил: “Да, квантовая механика – это магия”».
Кажется разумным, что наша интуиция в квантовом мире буксует. Мы не испытываем квантовых эффектов в повседневной жизни – слишком уж они слабые и хрупкие. Вообще-то было бы удивительно, если бы квантовая физика была интуитивно понятной, ведь нам никогда не представлялась возможность к ней привыкнуть.
Значит, и не стоит эту труднопонятность вменять в вину теории. Но, как и отсутствие эстетической привлекательности, труднопонятность препятствует прогрессу. И не исключено, думается мне, что это не то препятствие, которое мы в силах преодолеть. Возможно, мы завязли в основаниях физики, поскольку достигли пределов того, что человек в принципе способен осмыслить. Возможно, пришло время передать эстафету.
Адам проводит эксперименты с культурами микроорганизмов. Он выдвигает гипотезы и разрабатывает планы исследований. Сидит в лаборатории и распоряжается инкубаторами и центрифугами. Только вот Адам не живое существо, а машина. Это робот, сконструированный командой Росса Кинга в Университете Аберистуита в Уэльсе. Адам успешно выявил гены дрожжей, кодирующие определенные ферменты 110.
Машины проникают и в физику тоже. Исследователи из лаборатории интеллектуальных систем Корнеллского университета в Итаке (штат Нью-Йорк) создали компьютерную программу, в которую загружают сырые данные, а она выдает уравнения, описывающие движение систем, таких как хаотический двойной маятник. У компьютера ушло тридцать часов на то, чтобы вывести заново законы природы, над которыми люди бились столетиями 111.
В своей недавней работе по квантовой механике группа Антона Цайлингера использовала компьютерную программу – по прозвищу Мелвин, – чтобы разработать план экспериментов, проводившихся тогда людьми 112. Марио Кренн, аспирант, которому пришла в голову идея автоматизировать процесс планирования эксперимента, результатами доволен, но говорит, что ему все еще «довольно трудно понять на уровне интуиции, что конкретно там происходит»113.
И это только начало. Поиск закономерностей и систематизация информации – важнейшие задачи науки, а ведь это ровно те задачи, в решении которых искусственные нейронные сети призваны превосходить нас. Такие компьютеры, предназначенные для того, чтобы имитировать работу настоящего мозга, сейчас анализируют массивы данных, которые ни один человек не в состоянии объять, и ищут взаимосвязи с помощью алгоритмов глубокого обучения. Сомнений нет: технологический прогресс уже меняет то, что мы подразумеваем под выражением «делать науку».
Я пытаюсь вообразить день, когда мы просто-напросто скормим все космологические данные искусственному интеллекту. Сегодня мы гадаем, что же такое эти темная материя и темная энергия, но подобный вопрос для искусственного интеллекта даже не будет иметь смысла. Он просто сделает предсказания. Мы их проверим. И если искусственный интеллект стабильно будет оказываться прав, то мы поймем, что ему удалось найти верные закономерности и сделать нужные заключения. Вот это и станет тогда нашей новой согласованной космологической моделью. Мы вводим в компьютер вопрос, а он выдает нам ответ – и вуаля.
Если вы не физик, то такое положение дел будет не слишком-то отличаться от того, как вы сейчас читаете о предсказаниях, сделанных сообществом физиков, которые используют невразумительную математику и загадочную терминологию. Просто другой черный ящик. Кто знает, может, доверять искусственному интеллекту вы будете даже больше, чем нам.