вить, что она такая же и во всех других. Выгода – меньшее количество слов или, как в наших теориях, меньшее число уравнений.
Симметрии, с которыми имеют дело физики, представляют собой более абстрактные версии этого простого примера – вроде вращений относительно нескольких осей во внутренних математических пространствах. Но все они работают одинаково: найдите преобразование, относительно которого законы природы остаются инвариантными, – и вы нашли симметрию. Подобным преобразованием симметрии может быть что угодно, для чего вы можете записать четкую процедуру, – сдвиг, отражение, поворот или любая другая операция, какую вы только можете придумать. Если эта операция не меняет законов природы – вы нашли симметрию. С ней вы экономите усилия, которые необходимо было бы затратить, чтобы объяснить, к каким изменениям ведет эта операция: вместо этого вы просто констатируете, что изменений нет. Это и есть «экономия мышления» Маха.
В физике мы используем много разных типов симметрии, но у них у всех есть одна общая черта: симметрия – очень сильный объединяющий принцип, поскольку объясняет, как вещи, некогда казавшиеся очень разными, на самом деле, связанные преобразованием симметрии, составляют одно целое. Часто, однако, непросто найти правильную симметрию, чтобы упростить большие объемы данных.
Самым ошеломительным успехом принципов симметрии было, вероятно, создание кварковой модели. С момента появления ускорителей в 1930-х годах физики соударяли частицы друг с другом со все возрастающей энергией. К середине 1940-х они достигли энергий, позволяющих прощупать структуру атомного ядра, – и количество частиц стало расти. Сначала были заряженные пионы и каоны. Затем нейтральный пион и нейтральный каон, первые дельта-резонансы, частица, прозванная «лямбда», заряженные сигма-частицы, ро-частицы, омега-мезон, эта-, К*– и фи-мезон – и это было только начало. Когда Леон Ледерман спросил Энрико Ферми, что тот думает о недавнем открытии частицы, названной К20, Ферми ответил: «Молодой человек, если бы я мог упомнить названия этих частиц, я стал бы ботаником»26.
Всего физики детектировали сотни частиц, каждая из которых была нестабильной и быстро распадалась. Казалось, эти частицы никак друг с другом не связаны, и это шло вразрез с надеждой физиков на то, что законы природы будут упрощаться для более фундаментальных составляющих материи. К 1960-м годам главной исследовательской задачей стало вместить этот «зоопарк частиц» в целостную теорию.
Одним из наиболее популярных подходов в то время был следующий: попросту отказаться от желания получить объяснение и записывать свойства частиц в большую таблицу – матрицу рассеяния, или S-матрицу, – которая была самой противоположностью красоты и экономии. А затем пришел Марри Гелл-Манн. Он определил подходящие свойства частиц – названные гиперзарядом и изоспином, – и оказалось, что все частицы разделяются на симметричные группы, так называемые мультиплеты.
Позднее стало понятно: закономерности мультиплетов означают, что наблюдаемые частицы состоят из более мелких объектов, которые – по тогда еще не вполне понятным причинам – никогда не детектировались сами по себе, по отдельности. Гелл-Манн назвал эти более мелкие составляющие «кварками»[19]. Более легкие объединения – мезоны – состоят из двух кварков, а более тяжелые – барионы – из трех. (Все мезоны нестабильны. К барионам относятся нейтроны и протоны, образующие атомное ядро.)
Симметрия получающихся систем, будучи однажды раскрытой, бросается в глаза (рис. 1). Примечательно, что, когда Гелл-Манн предложил эту идею, некоторые мультиплеты все еще были неполны. И поэтому требования симметрии побудили его предсказать существование частиц, необходимых для «дозаполнения наборов», в частности существование бариона омега-минус. Позднее тот был найден со свойствами, вычисленными Гелл-Манном, и ученый в 1969 году был награжден Нобелевской премией. Красота одержала победу над неприглядностью, постмодернистским S-матричным подходом.
Рис. 1. Декуплет барионов – пример использования симметрий в теоретической физике. Гелл-Манн воспользовался его незавершенностью и предсказал существование частицы омега-минус (Ω—) в нижней вершине.
Этот случай был только началом череды успехов на счету симметрий. Принципы симметрии также управляли работой – увенчавшейся опять-таки успехом – над объединением электромагнитного взаимодействия со слабым в электрослабое взаимодействие. Аналогично сильное взаимодействие было объяснено симметрией между элементарными частицами. Теперь и теории относительности Эйнштейна – специальная и общая – могли восприниматься как выражение требований симметрии.
Таким образом, современная вера в красоту как ориентир основывается на применении этого критерия в развитии Стандартной модели и общей теории относительности. Его часто оправдывают экспериментальной полезностью: замечено, что он работает, и кажется крайне целесообразным продолжать его использовать. Гелл-Манн сам сказал, что «в фундаментальной физике красивая или элегантная теория с большей вероятностью оказывается верна, чем неэлегантная теория»[20]. Ледерман, молодой человек, спрашивавший Ферми о частице К20, также впоследствии получил Нобелевскую премию и тоже обратился в веру поборников красоты: «Мы верим, что природа лучше всего описывается уравнениями как можно более простыми, красивыми, компактными и универсальными»27.
Стивен Вайнберг, также удостоенный Нобелевской премии – за объединение электромагнитного и слабого взаимодействий, – любит проводить аналогию с коневодством: «[Коневод] смотрит на лошадь и говорит: “Прекрасная лошадь”. Хотя он или она может выражать чисто эстетическое чувство, я думаю, за этим стоит нечто большее. Коневод перевидал множество лошадей и по своему опыту работы с ними знает, что вот та лошадь, которая побеждает на скачках»28.
Однако как опыт работы с лошадьми не помогает при конструировании гоночных машин, так и опыт теорий прошедшего столетия, вероятно, несильно поможет при создании теорий лучше прежних. Да и без оправдательных отсылок к опыту красота остается такой же субъективной, какой была всегда. Современные физики осознают это очевидное противоречие научному методу, однако же применение эстетических критериев стало широко распространенным. И чем дальше область исследований от экспериментальной проверки, тем больше учитывается эстетическая привлекательность соответствующих теорий.
В фундаментальной физике, которая настолько далека от экспериментальных испытаний, насколько только наука может быть, все еще оставаясь наукой, оценивание красоты особенно ярко выражено. Многие из моих коллег даже не пытаются отрицать, что уделяют больше внимания теориям, которые считают привлекательными. Их типичное предостережение против субъективных оценок неизменно сопровождается последующим «но» и отсылкой к распространенной практике.
Так, Фрэнк Вильчек, получивший в 2004 году вместе с Дэвидом Гроссом и Хью Дэвидом Политцером Нобелевскую премию за исследования сильного взаимодействия, пишет в своей книге «Красота физики», что «наше чувство прекрасного никак напрямую не приспособлено к фундаментальным работам Природы». Но: «Попробовав вкус красоты в сердце мира, мы жаждем большего. В этих поисках, я думаю, нет более многообещающего проводника, чем сама красота»29[21].
Герард Хоофт, первым сформулировавший математический критерий естественности, который теперь направляет значительную часть исследований в теоретической физике элементарных частиц (и тоже удостоенный Нобелевской премии), предостерегает: «Красота – опасное понятие, поскольку она всегда может вводить людей в заблуждение. Если у вас есть теория, оказавшаяся красивее, чем вы исходно ожидали, это служит намеком на то, что все верно, что вы правы. Но никаких гарантий и в помине нет. На ваш взгляд, теория, положим, и красива, но она может быть просто ошибочной. И с этим ничего не поделаешь». Но: «Разумеется, когда мы читаем о новых теориях и видим, как они красивы и просты, у них есть немалое преимущество. Мы верим, что такие теории имеют гораздо больше шансов оказаться успешными»30.
В своей книге-бестселлере «Элегантная Вселенная» специалист по теории струн Брайан Грин (не получивший Нобелевской премии) уверяет читателя: «…Эстетические аргументы не решают научных споров». Затем он продолжает: «Однако, несомненно, бывают случаи, когда решения, принимаемые физиками-теоретиками, основываются на эстетических соображениях, на ощущении того, что красота и элегантность той или иной теории соответствуют красоте и элегантности окружающего нас мира. <…> До настоящего времени такой подход не раз демонстрировал свою мощь и предсказательную силу»31[22].
Абстрактная математика трудно выразима, и этот человеческий поиск красоты может быть назван средством маркетинга научно-популярных книг. Но научно-популярные книги не просто доступно излагают трудные вопросы, а делают нечто большее – показывают, как физики-теоретики мыслят и работают.
Где обитает красота
Триумфы прошлого века все еще свежи в памяти ученых, сегодня приближающихся к выходу на пенсию, и их упор на красоту существенно повлиял на следующее поколение – мое поколение, неуспешное. Мы работаем с уже формализованными эстетическими идеалами прошлого – симметрией, объединением и естественностью.
Кажется вполне разумным опираться на опыт прошлых лет и пробовать то, что работало прежде. И вправду, мы были бы глупцами, если бы не следовали советам наших предшественников. Но мы также были бы глупцами, если бы зацикливались на этих советах. И я настороженна и становлюсь все настороженней с каждым нулевым результатом. Красота – проводник ненадежный, она уже много раз сбивала физиков с пути.