Уроки дедушки Гаврилы, или Развивающие каникулы — страница 12 из 30

ни съели поровну. После этого третий выложил 8 лепт в уплату за лишние съеденные лепешки. Как они должны поделить эти деньги?

Второй считает, что ему положено 3 лепты, а первому — 5 лепт. Прав ли он?

84. Один человек никак не мог выбрать, на какую работу ему лучше устроиться, и просил совета. На одной работе первую неделю он работал бесплатно, но за каждую следующую неделю, начиная со второй, он получал на 1 драхму больше, чем за предыдущую. На другой же работе он работал бесплатно две недели, но зато за каждые следующие две недели он получал на 4 драхмы больше, чем за две предыдущие. Какая работа выгоднее?

85. Пришлось решать Нави спор между жителями одной деревни и известным бароном Мюнхгаузеном, владевшим участком земли неподалеку. Спор шел из-за рощи оливковых деревьев. Барон утверждал, что эта роща принадлежит ему. Жители деревни говорили, что это не так. В их распоряжении был обгоревший кусок карты (рис. 24). Большая часть карты сгорела при пожаре. На оставшемся обрывке имелся лишь замок барона, указаны части границы его владений и сама роща. Нави сумел по этому куску карты определить, входит роща во владение барона или нет. Как он это сделал?

Рис. 24

Это несколько примеров задач, с которыми приходилось сталкиваться Нави в начале своей службы у Аль Труиста. Постепенно жители страны стали лучше разбираться в математике и с такими простыми вопросами уже не обращались. Конкурсы по решению математических задач стали самым обычным явлением. Каждую неделю Нави и его помощники придумывали 9 задач: 3 для школьников младших классов, 3 для старших школьников и 3 для взрослых. В этих конкурсах участвовали почти все жители страны. Победители становились очень известными людьми, о них пели песни и рассказывали в школах. Многие жители страны с увлечением сами придумывали математические задачи. Особенно — по геометрии. Свои задачи люди изображали цветными красками на специальных досках, которые вывешивались на центральных площадях городов. Считалось, что человек, постигший тайны геометрии, достиг высшего совершенства. К сожалению, большинство достижений геометров Аииарии оказалось впоследствии утеряно, и их заново открывали уже другие поколения.

Это были прекрасные годы расцвета математики и поэзии. Многие математики становились поэтами, а поэты — математиками.

— Да, — вздохнул дедушка, прочитав очередной отрывок, — сегодня очень трудно найти настоящего человека слова, хотя человеки слов, то есть болтуны, встречаются на каждом шагу. А уж людей, разбирающихся в логике, а тем более в математической логике, да еще среди правителей, нет совсем. Ведь для того чтобы понять, какую ловушку устроил Нави для Аль Труиста своей просьбой (помнишь это место? Прочитай его еще раз), надо быть не только человеком слова, но и человеком слова, который разбирается еще и в математической логике. Честно говоря, я сам в ней не всегда хорошо разбираюсь. Самыми трудными для меня являются логические задачи. А ты понял, что Аль Труист оказался вынужден выполнить просьбы всех 10 людей, чтобы сдержать данное им слово?

— Кажется, понял, — не очень уверенно ответил Федор и решил перевести разговор на другую тему: — А как с поэзией? Ты любишь стихи? А сам когда-нибудь писал стихи?

В ответ дедушка еще раз и более глубоко вздохнул:

— Я очень люблю стихи. Да и всякий математик любит поэзию, музыку, живопись. На самом деле математика, литература, музыка, живопись очень близки друг другу. Ведь, чтобы быть математиком, поэтом, художником, музыкантом, надо иметь хорошее ВООБРАЖЕНИЕ.

Писал ли я сам? Видишь ли, не всякий человек, который умеет говорить в рифму, является поэтом. Я люблю писать стихи, но не делаю этого по двум причинам. Так, как я хочу писать, — я не умею. А так, как я умею, — я не хочу писать. Правда, я однажды в жизни был поэтом. Всю ночь я писал стихи и написал одно гениальное стихотворение. Но, к сожалению, утром забыл почти все. Запомнил лишь две строчки. Первую и последнюю. И дедушка с выражением, но различным выражением прочитал:

Я однажды в жизни был поэтом!

………………………………….……………….

………………………………….……………….

………………………………….……………….

………………………………….……………….

Я однажды в жизни был поэтом?

Но ты немного увел меня в сторону. Я хотел сказать, как важно, когда во главе государства стоит человек образованный и честный.

— А если выбирать, как это делаем мы? — спросил Федя. — Ведь мы всегда можем выбрать самого лучшего.

— Ну, здесь все далеко не так просто. Я не буду тебе долго объяснять всю сложность проблемы выборов, а приведу один пример. Сначала ответь на два вопроса: сколько у вас в классе учеников и есть ли такой ученик, который явно выделяется среди других?

— У нас в классе 29 человек. Я думаю, что Коля Васильев является у нас самым лучшим.

— Теперь представь себе, что надо выбрать 5 человек из класса для очень интересной поездки, допустим, в Америку или на озеро Байкал. Я думаю, что Коля Васильев непременно окажется среди этих 5 человек. Допустим также, что среди 24 оставшихся учеников 16 очень любят Колю, а 8 не любят. Например, просто завидуют. А к остальным 4 счастливцам отношение примерно одинаковое. Но вдруг выясняется, что поехать должны не 5 человек, а только 4. Устраиваем голосование. Против Коли 8 голосов. А против каждого из остальных примерно по 4. В результате голосования не поедет.

— Коля!

— Вот именно. А теперь наоборот. Из этих 5 надо выбрать 1, самого лучшего. Понятно, что выберут Колю. Вот тебе и выборы. Один и тот же человек — и самый лучший, и самый худший.

Глава 13О смысле слов

— Насколько я помню, мы уже немного поговорили о математике и языке. Математика — это язык. Но это язык — точный. Каждое слово, каждое выражение в математике должно иметь точный и единственный смысл. В то время как в обычном языке и слова, и целые фразы могут пониматься по-разному, многие писатели и многие математики любят играть языком, рассматривая слова и выражения так и сяк. Однако, если одно слово слишком долго вертеть и так и сяк, оно может потерять всякий смысл. Попробуй, повтори 100 раз слово смысл, и оно потеряет само себя.

Кстати, ты обратил внимание, что выражение играть языком выглядит двусмысленно. Возникают какие-то нелепые (нелепые) вопросы. Например, можно ли играть носом или ухом?

Здесь Федя вспомнил, как папа однажды сказал про одну мамину подругу, что она на работе только и делает, что чешет язык… или языком.

— Очень многие загадки основаны на различном смысле, который можно вложить в вопрос. Вот простой пример.

86. Чем оканчивается и день, и ночь?

(Д—29–35.)

— Зарей! — воскликнул Федя. — Только день кончается вечерней зарей, а ночь — утренней.

— Верно! Но возможен и другой ответ, основанный на другом понимании вопроса. В молодости мы с друзьями очень любили играть в слова, — продолжал дедушка. — Я знаю несколько таких игр. С одной из них ты уже немного знаком. Надо из букв какого-нибудь слова составить как можно больше других слов. Бывают даже слова, которые отличаются друг от друга только перестановкой букв. Например, апельсин и спаниель, вертикаль и кильватер.

87. Возьми орфографический словарь русского языка и попробуй с его помощью найти все слова, которые можно получить из букв слова товар.

Интересно придумывать слова из букв фамилий знакомых людей. К сожалению, из нашей с тобой фамилии Привалов ничего особо интересного не придумаешь. Разве что пролив или провал. А вот у нас в школе была учительница по фамилии Евзерихина. Так она из своей фамилии получила знаешь что? Завихрение. Проверь, что слово это действительно состоит из тех же букв, переставленных в другом порядке. Мы когда-то играли в такую игру: надо было придумать фамилию человека (или имя) и из тех же букв, только в другом порядке, составить его профессию. Например, планерист Расплетин (знаешь, кто такой планерист?). Мой друг придумал такой пример: рисовод Сидоров. Был даже невропатолог Егор Платонов. (Невропатолог — это такой врач. Желаю тебе никогда с ним не встречаться, и вообще, пореже встречаться с врачами. Лечись геометрией.)

88. В нашей столовой работала женщина по фамилии Архипова. Как ты думаешь, кто она по профессии?

Попробуй сам придумать какую-нибудь пару «человек — профессия».

Конечно, ты можешь спросить: а причем здесь математика? Хотя, полагаю, теперь ты уже не задашь такой нелепый вопрос. Но кто-то так спросить может. Но так как этого кто-та здесь нет, то я не стану отвечать на этот вопрос, а задам тебе другой:

89. Прочитай внимательно две фразы. Первая: «В этой фразе двадцать восемь букв». Вторая: «В этой фразе двадцать девять букв». В чем, по-твоему, самое важное различие между этими фразами?

Первая фраза отличается от второй хотя бы тем, что она верна. Чего не скажешь о второй фразе. Чтобы в этом убедиться, достаточно подсчитать число букв в каждой фразе. А вот еще два истинных (верных) утверждения. Проверь! «Это предложение содержит двенадцать слов, двадцать шесть слогов и семьдесят три буквы». «В этой фразе двенадцать В, две Э, семнадцать Т, три О, две Й, две Ф, семь Р, четырнадцать А, две З, двенадцать Е, шестнадцать Д, семь Н, семь Ц, тринадцать Ь, восемь С, шесть М, пять И, две Ч, две Ы, три Я, три Ш, две П».

К сожалению, придумать фразу, в которой обыгрывались бы все 33 буквы алфавита, мне не удалось. Может, кто-нибудь (хотя бы с помощью компьютера) сумеет это сделать? Это было бы здорово.

90. Какое слово надо поставить вместо многоточия в фразу