Уроки дедушки Гаврилы, или Развивающие каникулы — страница 13 из 30

«Число букв в этой фразе равно…», чтобы это было и верное, и грамотное утверждение?

91. А вот еще одна забава, связанная с алфавитом и арифметикой. Давай выпишем алфавит и занумеруем все его буквы. Теперь мы можем писать шифрованные послания, заменяя буквы числами. Я думаю, ты легко прочтешь слово 1, 9, 2, 21, 12, 1 или целую пословицу: 20, 6, 18, 17, 6, 15, 30, 6, 10, 20, 18, 21, 5, 3, 19, 7, 17, 6, 18, 6, 20, 18, 21, 20. А можно, наоборот, из слов получать числа. Если мы каждому слову или выражению из слов поставим соответствующую сумму номеров входящих в него букв, то можно получить забавные равенства или же неравенства. Вот несколько примеров. ПАР = ОСА, РОГ = ЗЛО, МИША = ГАЛЯ, МАМА И ПАПА = ДОЧЬ. Попробуй и ты придумать интересные равенства такого типа.

92. Сейчас все увлекаются кроссвордами. Занятие это не очень умное и к математике имеет далекое отношение. Но все-таки я предложу тебе небольшой кроссворд. Он интересен тем, что в нем всего 10 слов, которые полностью заполняют квадрат 5 х 5 (рис. 25). Одни слова тебе хорошо известны, другие — не очень. Но ты их узнаешь, когда впишешь известные слова.

По горизонтали:

1) нос у слона,

6) царская немилость,

7) человек, сдающий свою кровь,

8) группа орущих и бегающих мальчишек,

9) закон.

По вертикали:

1) человек, идущий пешком,

2) то, чем является ножка стола для самого стола,

3) любимый фрукт обезьян,

4) серебристый металл, используемый при паянии,

5) столкновение двух машин или самолетов лоб в лоб.

Рис. 25

Глава 14Задачи на части и на уравнивание

— Слышал ли ты когда-нибудь о таком маленьком существе по имени Часть?

Этот вопрос, неожиданно заданный дедушкой, когда они в очередной раз прогуливали уроки, очень удивил Федю. Конечно, слово часть ему было знакомо. Он даже понимал, что бывают разные части. Например, когда учительница говорит, что сегодня часть урока будет посвящена обсуждению последнего приказа директора школы, то никаких вопросов не возникает. Это хорошо, но скучно. С другой стороны, его сосед по парте Рамиль похвастался однажды, что его брат военный и служит в какой-то очень секретной части. Но о загадочном существе по имени Часть Федя не слышал никогда.

— Попробую объяснить на примерах. В старинных задачах часто делят наследство. Рассмотрим фразу «Три брата разделили наследство в отношении 2:3:4». (Между числами, указывающими отношение, принято ставить двоеточие.) Как это надо понимать? Пусть наследство в рублях. Тогда существует такой гномик, который называется Часть, или, точнее, Одна Часть, у которого есть такая сумма денег, что у первого брата ровно в 2 раза больше денег (говорим, что у него 2 части), чем у него, у второго брата в 3 раза больше денег (у него 3 части), чем у гномика, а у третьего брата соответственно в 4 раза больше (4 части). Понятно, что у этого гномика деньги свои собственные и никакого отношения к наследству он не имеет. Так что про него можно забыть. Давай сразу и решим простую задачу.


93. Три брата должны согласно воле отца разделить оставленное наследство в сумме 2340 драхм в отношении 2:3:4.Сколько драхм положено каждому брату?

(Д—36–39.)

Решение достаточно простое, вспомним и тут же забудем о нашем гномике по имени Одна Часть. Тогда первый брат должен получить 2 части, второй — 3 части, третий — 4 части. Значит, все наследство — это 2 + 3 + 4 = 9 частей. Разделив 2340 на 9, найдем, чему равна одна часть, а затем и суммы, положенные каждому из братьев.

Я не знаю, изучали ли вы в школе задачи, а вернее, способы решения с иксом (обозначается буквой x). Если да, то ты можешь сказать, что это просто решение с иксом. Это верно. Но Икс фигура очень важная. И мы его оставим на будущее для более серьезных случаев.

Для контроля реши еще две простые задачи.

94. Группа туристов за два дня прошла 72 километра. При этом расстояния, пройденные в первый и второй дни, относятся как 3:5. Сколько километров прошли туристы в первый и второй день?

95. Расстояния, пройденные группой туристов за два дня, относятся как 3:7. При этом во второй день они прошли на 24 километра больше, чем в первый. Сколько километров туристы прошли в первый день?

Теперь другая задача, тоже достаточно простая.

96. На двух полках стоят книги. Всего 91 книга. При этом на нижней полке на 7 книг больше, чем на верхней. Сколько книг стоит на каждой полке?

Задача эта не трудная, но все-таки я расскажу два способа ее решения.

Первый способ: метод подбора. Понятно, что на нижней полке больше половины всех книг. Если бы на нижней полке было бы 47 книг, то на верхней будет 44 книги. Всего на 3 меньше. А должно быть на 7. Значит, на нижней полке больше, чем 47 книг. Если бы на нижней полке была 51 книга, то на верхней — 40. Значит, 51 — это многовато. И число книг на нижней полке больше 47 и меньше 51. Можно перебрать все варианты. Их всего три: 48, 49 и 50. Подойдет 49. Тогда на верхней полке 42 книги. Итак, мы получили ответ: на нижней полке 49 книг, а на верхней 42 книги.

— А разве так можно решать задачи? — удивился Федя.

— Вполне хорошее решение. Мы не просто угадали ответ, но и обосновали (доказали!), что ни больше, ни меньше 49 книг на нижней полке быть не может. К сожалению, во многих телевизионных играх требуется только угадать ответ. Игрок не должен объяснять, почему верен именно этот ответ. А вопрос почему? как ты помнишь, — главный вопрос в математике. А теперь решим эту же задачу по другому.

Второй способ: метод уравнивания. Снимем с нижней полки 7 книг. Тогда общее число книг станет 91 — 7 = 84 и на обеих полках будет книг поровну. Значит, на верхней полке 42 книги, а на нижней 42 + 7 = 49 книг. Получили тот же ответ. Что не удивительно. Оба решения правильны. К сожалению, иногда можно получить правильный ответ и при неправильном решении. Помнится, я уже приводил такой пример.

Вот еще одна задача, несколько иная по формулировке, но при решении которой «работают» те же методы.

97. 30 животных — собак и кошек накормили котлетами. Каждая собака съела по 3 котлеты, а каждая кошка по 2. Всего было съедено 73 котлеты. Сколько было собак и сколько кошек?

Эту задачу также можно решить методами подбора и уравнивания. (Это вовсе не означает, что нет других способов ее решения.) Попробуй подобрать ответ самостоятельно. Не забудь объяснить, почему нет другого ответа. Я же покажу, как можно воспользоваться методом уравнивания.

Дадим всем животным по 2 котлеты, как кошкам. Потребуется 60 котлет. Осталось 13 котлет. Чьи это котлеты?

— Собачьи.

— Верно. Значит, было 13 собак и 17 кошек.

Глава 15Задачи и забавы из сундука

Каждое утро первым делом Федя открывал сундук. И почти всегда находил там что-то интересное. Он уже этому не удивлялся. К чудесам привыкаешь быстро. Скорее, он удивлялся тем редким случаям, когда сундук оказывался пустым. Очень часто в сундуке обнаруживались условия интересных задач, описания занимательных математических забав, различные инструменты и материалы, помогающие выполнить предлагаемое задание. Федор понимал, что эти задачи и забавы придуманы Нави и его помощниками для учеников и жителей Аииарии. Все, что Федя вынимал из сундука, он складывал на своем столе. Сначала с правой стороны. Там собирались задачи и задания, в которых он еще не разобрался. А те, что он выполнил — сам или с помощью дедушки, перекладывал на левую сторону. Пора и нам познакомить читателя с этой все пополняющейся на столе коллекцией.

98. Эту удивительную забаву прислал нам друг из соседней Индии. Его имя Капрекар. Возьми любые четыре цифры, но не все одинаковые (одинаковыми могут быть три). Запиши их в порядке убывания, начиная с наибольшей. Получишь четырехзначное число. Затем запиши эти цифры в порядке возрастания. Получишь другое четырехзначное число. Вычти второе из первого. Если результатом будет число трехзначное, припиши спереди 0. С получившимися четырьмя цифрами поступи точно так же. Не позднее чем на седьмом шаге ты получишь некое число. При этом ты быстро поймешь, что дальше вычислять смысла нет. Это число ты сможешь прочитать на обратной стороне этой бумаги, если подержишь ее под лучами жаркого солнца.

99. Ты сам можешь составить для себя упражнения на два самых трудных арифметических действия: умножение и деление. Возьми большой лист бумаги, нарисуй на нем квадратную сетку (рис. 26). Представь себе, что все квадраты окрашены в шахматном порядке. Рассмотри лишь белые квадраты. Сверху вниз от одной белой клетки до другой проведи произвольный зигзаг, стороны которого идут по белым диагоналям (число сторон у зигзага любое). Возьми два горизонтальных ряда из белых клеток, начинающихся в верхнем и нижнем концах зигзага и идущих в правую сторону (см. рис. 26). Во всех клетках зигзага впиши 1. Напиши 1 и в клетках, составляющих два горизонтальных ряда. (Сначала поставь 1 лишь в первых клетках.) Теперь начни заполнять числами белые клетки внутри получившейся полосы и вправо от зигзага по следующему правилу. Возьми любые четыре соседние белые клетки, образующие квадрат с вершинами вверху и внизу, а также справа и слева:

Рис. 26



Здесь буквы В, П, Л и Н означают верхний квадрат, правый квадрат, левый квадрат и нижний квадрат. Если во всех четырех квадратах стоят числа, то связь между ними определяется равенством В Н + 1 = Л П. Другими словами, если мы знаем числа, находящиеся в верхнем, нижнем и левом квадратах, то мы можем найти число, стоящее в правом квадрате. Для этого нам надо перемножить числа из верхнего и нижнего квадратов, прибавить к произведению 1 и разделить получившуюся сумму на число, стоящее в левом квадрате. Начав двигаться от зигзага, мы начнем заполнять соответствующие белые клетки числами, которые сначала будут расти, а затем уменьшаться, пока снова не возникнет другой зигзаг из 1, но уже с правой стороны. На рисунке 26 показан пример: начальный зигзаг (он слева) и то, что из него получилось.