Уроки дедушки Гаврилы, или Развивающие каникулы — страница 14 из 30

Удивительно, но всякий раз деление будет возможно без остатка. Если, конечно, ты не будешь ошибаться. Чем длиннее исходный зигзаг, тем большие по величине числа будут появляться.

100. Однажды на постоялый двор прибыл чужестранец. У него не было денег, но была золотая цепочка из 7 звеньев. Он договорился с хозяином, что за каждые сутки проживания будет платить по 1 звену из своей цепочки. При этом он должен отдавать 1 звено сразу, как закончатся сутки. Понятно, что для выполнения этого условия необходимо распиливать цепочку. Путник прожил на постоялом дворе ровно 7 дней, полностью рассчитался с хозяином и при этом распилил лишь одно звено в цепочке. Как это ему удалось?

101. По дереву, высота которого равна 10 метрам, ползет улитка. За день она поднимается на 3 метра, а ночью сползает вниз на 2 метра. Через сколько времени она доберется до вершины дерева?

(Д—40–41.)

102. На противоположных краях Большой Желтой пустыни находились два караван-сарая. Из каждого ежедневно точно в полдень отправлялся караван верблюдов, который пересекал пустыню ровно за 7 суток и прибывал в противоположный караван-сарай так же точно в 12 часов дня. Сколько встречных караванов будет на пути следования одного каравана?

103. На какое наибольшее число частей можно раз-рубить подкову двумя ударами меча?

104. В круге проделана круглая дырка, не лежащая в центре (рис. 27). Разрежь круг на две части, которые затем можно сложить так, что получится такой же круг, но с дыркой в центре.


Рис. 27

105. Летит стая драконов. Среди них есть драконы двух видов. У одних три головы и два хвоста, а у других — две головы и три хвоста. Всего голов 173, а хвостов 192. Спрашивается: сколько трехголовых и сколько двухголовых драконов в стае?

106. Хитрый Иосиф. Существует легенда, согласно которой после захвата Иотапаты римлянами Иосиф вместе с 40 иудейскими воинами бежал и спрятался в пещере. Находясь в пещере, воины решили, что лучше покончить с собой, чем попасть в руки завоевателей. С этим не согласился сам Иосиф и еще один человек. Однако, опасаясь открыто выступить против остальных, он как будто с ним согласился и предложил выполнить принятое решение организованно: всем встать в круг и убивать каждого третьего, пока не останется один человек, который совершит самоубийство. Затем Иосиф поставил себя и своего единомышленника на такие места, что они оказывались последними двумя остающимися в живых. Какие места определил Иосиф себе и своему единомышленнику?

107. 3 прыжка волка равны 5 прыжкам лисы. Но за то время, когда волк делает 4 прыжка, лиса делает 7 прыжков. Кто из них бежит быстрее?

Глава 16Предсказания и прогнозы

Дедушка обратил внимание Феди на два первых задания из нашего списка (98 и 99). Он посоветовал выполнить их несколько раз. Что же касается задания 99, то его для тренировки надо делать ежедневно, меняя начальный зигзаг. Это не только полезно, но и очень интересно. Удивительным образом каждый раз получающиеся числа делятся нацело. (Здесь автор решил воспользоваться своим положением и обратиться к читателю. Непременно проделай это упражнение. Ты получишь большое удовольствие.)

— Задача 98 — пример абсолютно точного предсказания. Я могу привести и другие примеры, правда, более простые. Сначала я напишу на бумажке некоторое число и положу эту бумажку на стол под тарелку. А теперь ты задумай любое число. Задумал?

— Да! 17.

— Не надо мне его сообщать. Давай снова. Задумай любое число.

— Задумал.

— Теперь прибавь к нему 5, затем вычти 3, прибавь 1 и вычти задуманное число. Все сделал?

— Да.

— Возьми бумажку, там написано число, которое ты получил.

108. Какое число было записано на бумажке?

— Ну, здесь все понятно, — сказал Федор.

— Хорошо. Вот чуть более сложная задача.

109. Я снова пишу на бумажке число и кладу ее под тарелку. Теперь ты задумай любое однозначное число, умножь его на 5, прибавь 3, получившееся умножь на 2, прибавь 5, зачеркни первую цифру. У тебя получилось число, написанное на бумажке. Возможно, правда, перед ним у тебя стоит 0, если ты задумал 9. Можешь ты объяснить, почему всегда будет получаться один и тот же результат?

Но это все не предсказания, а математические забавы. Ты, конечно, можешь спросить: а можно ли вообще предсказать будущее? По телевизору часто выступают всякие «темные» личности, предсказывающие будущее. Некоторые даже объявляют себя учеными. Это так называемые астрологи. На самом деле, это не ученые. Люди даже погоду на завтра не всегда могут правильно предсказать. Ну ладно, оставим эту тему. Я лучше дам тебе пару задач с подвохом. (Что такое под-вох знаешь? И чем он отличается от над-воха?)

110. Сейчас 12 часов дня, и у нас в Квашино идет сильный дождь. Возможно ли, чтобы ровно через 60 часов у нас светило яркое солнце?

111. Ты интересуешься футболом. Я, например, могу предсказать, какой будет счет перед началом любого матча.

Это две немного шуточные задачи. Точно предсказывать нельзя. За исключением очевидных и неинтересных событий. Завтра будет четверг. В июле будет дождливый день. Впрочем, может случиться, что в течение всего июля в нашей деревне не будет дождя. Но это, как говорят математики, маловероятно. За всю историю существования Квашино такого июля не было.

Иногда можно угадать, что то или иное событие произойдет. Давай посмотрим, умеешь ли ты угадывать.

112. Я сейчас опишу на бумажке некоторое событие, которое то ли произойдет, то ли не произойдет в ближайшие 10 минут. Кладу эту бумажку под тарелку. Теперь ты на своей бумажке напиши слово «да», если считаешь, что это событие произойдет, и слово «нет», если считаешь, что оно не произойдет. По прошествии 10 минут с того момента, когда я положил под тарелку свою записку, мы вынимаем обе бумажки и читаем. Если ты угадываешь, то я никогда в жизни не буду больше есть конфеты «Гипотенуза». Если же нет, то ты громко кричишь «кукареку».

(Д—42–44.)

— Но я совсем не хочу, чтобы ты не ел любимые конфеты, — сказал Федя.

— Не волнуйся. Чтобы лишить меня любимого лакомства, ты должен угадать. Уверяю, тебе не удастся выиграть. Никогда.

Федя задумался, какое такое событие может описать дедушка, что он не сможет угадать. Ведь одно из двух должно произойти. Либо «да», либо «нет».

Какое же событие написал дедушка на своем листке?

— Ну ладно, внучек. Не буду тебя мучить. Тем более, что задачка эта трудная. Она на математическую логику. Честно скажу: я сам в свое время не догадался. Видишь, на моей бумажке написано: «Ты напишешь слово «нет». Чтобы теперь ты ни написал, ты проигрываешь.

Честно говоря, Федя не очень понял.

— Допустим, ты написал слово «нет». Значит, событие, которое я описал, произошло. А ты сказал, что оно не произойдет. Ты проиграл. Теперь допустим, ты написал слово «да». Событие, описанное мною, не произошло. А ты сказал, что оно произойдет. Ты опять проиграл.

Теперь Федя вроде бы все понял, хотя и был немного разочарован. Это всего лишь математический фокус. Он так и сказал дедушке.

— А настоящие фокусы ты умеешь делать? — спросил он неуверенно.

— Попробую. — И дедушка достал из сундука несколько карточек. Он показал карточки Феде. На них были написаны числа от 1 до 10. Он сложил карточки цифрами вниз и предложил Феде их перемешать. Затем эти карточки опустил в правый карман и, постучав по нему и сказав какое-то заклинание, предложил Феде заглянуть в карман. Карман оказался пуст. После этого дедушка достал карточки из другого кармана, разложил их на столе цифрами вниз и предложил Феде взять любую карту.

— Сейчас ты вынешь карту с номером 7, — сказал он.

К огромному изумлению Феди, именно так и случилось. Федя даже немного опешил, а затем и ошалел. А может, наоборот, сначала ошалел, а затем опешил.Нет, на самом деле он одновременно и опешил, и ошалел. (Честно говоря, смысл этих слов мне, автору, не очень понятен. Возможно, что опешил означает, что человек ехал на лошади, а потом вдруг пошел пешком. А как объяснить ошалел, я не знаю. Бабушка Фединой мамы носила шаль. Возможно, от этого она ошалевала. Но причем здесь Федя?)

— А еще раз!

— Хватит и одного.

113. Ты лучше подумай, как я это сделал.

В действительности, все очень легко. Этот фокус, правда на картах, давным-давно показал мне один человек, когда я отдыхал в Ялте. Я неделю потом ходил за ним и просил объяснить секрет. И когда он поддался на мои уговоры и рассказал, я долго удивлялся. Как все просто! И до чего мы все доверчивы!

Глава 17Геометрия в дождливый день

Когда настал очередной дождливый день, который накануне, как всегда, точно предсказала дедушкина поясница, утром в сундуке обнаружились в большом количестве листы белой бумаги, ножницы, коробок со спичками и еще кое-что.

— Самое время заняться геометрией, — сказал дедушка. — Начнем со спичек. Я беру 9 спичек и выкладываю так, чтобы получилось три треугольника. Сторона каждого равна длине спички (рис. 28). Точнее, каждая сторона равна длине спички. Треугольники, у которых равны все три стороны, называются равносторонними. Треугольники, у которых равны две стороны, называются равнобедренными.


Рис. 28

114. Переложи две спички так, чтобы образовалось 4 таких же треугольника.