15. У Паши 2 + 1 = 3 сестры (плюс сама Маша) и 2 — 1 = 1 брат (минус он сам).
16. Они тройняшки. У них есть еще третий близнец, сестра или брат.
18. За 6 дней лошадь съест 3 охапки сена, корова — 2 охапки и коза — 1 охапку. То есть вместе они съедят 6 охапок. А одну охапку вместе съедят за 1 день.
20. Сложите три кирпича так, как показано на рисунке 61. И меряйте.
Рис. 61
21. 9 кур за 3 дня снесут 9 яиц. А 9 кур за 9 дней снесут 9 • 3 = 27 яиц.
23. Решение в тексте после задачи 29.
24. Сделав разрез (вернее, много разрезов) в листе, как изображено на рисунке 62, мы можем затем «растянуть» лист с разрезами и получить нечто вроде большого бумажного кольца. Есть и другие способы сделать разрез с нужным свойством.
Рис. 62
26. Число советников равно сумме 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512 +1024 = 2047.
27. а) 89, 287, 497, 999, 2766; б) LXXIII, CCLXXXIV, DCCCLXXVI, MMDCLXVI; в) MMMCMXCIX = 3999.
28. 100 квадратных сантиметров.
29. Задание состоит в проверке равенств. Например, проверим последнее. Левая часть (40 + 19) • (40 — 19) = 59 • 21 = 1239, правая часть 40 • 40 — 19 • 19 = 1600 — 361 = 1239.
30. 31 • 29 = (30 + 1) • (30 — 1) = 30 • 30 — 1 • 1 = 900 — 1 = 899, 102 • 98 = 10 000 — 4 = 9996, 204 • 196 = 40 000 — 16 = 39 984, 999 • 1001 = 1000 • 1000 — 1 = 999 999. Выражение 56 789 • 56 789 — 56 790 • 56 788 равно 1, так как 56 790 • 56 788 = (56 789 + 1) • (56 789 — 1) = 56 789 • 56 789 — 1.
31. Если остается 8 палочек, то начинающий проигрывает. Это очевидно. Также начинающий проигрывает, если остается 16 палочек. Ведь сколько бы он ни взял, второй игрок может оставить ему 8 палочек, то есть поставить в проигрышное положение. Точно так же начинающий проигрывает (при правильной игре соперника), если на столе 24, 32 палочки и вообще количество, делящееся на 8. А поскольку ближайшее к 50 число, которое делится на 8, есть 48, начинающий выигрывает. Он должен взять 2 палочки.
32. Решение дано в тексте. Повторяем: первый игрок, начинающий, должен каждый раз уравнивать число палочек в обеих кучках.
33. Заметим, что «плохими» являются числа 1, 3, 7, 15, 31. Если осталась 1 конфета, начинающий проигрывает. Это очевидно. Если имеется 3 конфеты, то начинающий также проигрывает. Он берет одну, а соперник тоже одну. Если имеется 7 конфет, то второй игрок всегда может оставить начинающему 3 конфеты. Также, если имеется 15 конфет, то на любой ход первого игрока второй может оставить ему 7 конфет. То есть «плохое» число. Следующим «плохим» числом является 31. Значит, Карлсон должен взять 1 конфету, чтобы Малыш не мог выиграть. Учитывая любовь Карлсона к сладкому, трудно поверить, что он сделает такой ход (возьмет только 1 конфету). В этой игре жадина проигрывает!
35. Порядок действий задается условием. Главное не запутаться. Последнее равенство должно выглядеть так: 2 + 98 = 100.
36. а) Наибольшее число получим, если вовсе не будет скобок: 31 — 13 + 7 — 5 + 1 = 21. Наименьшее: 31 — (13 + 7) — (5 + 1) = 5.
б) Наибольшее число: 31 — (13 — 7 — 5 — 1) = 31. Наименьшее: 31 — 13 — 7 — 5 — 1 = 5.
37. См. рисунок 63.
Рис. 63
38. Числа должны повторяться через каждые две клетки. Так, число в первой клетке равно числу в четвертой клетке. Ведь если к сумме второго и третьего чисел прибавить первое, то получится тот же результат, что и при прибавлении четвертого. Затем число в четвертой клетке равно числу в седьмой клетке. И так далее. Точно так же равны числа во 2, 5, 8-й и так далее клетках. А также в 3, 6, 9-й, …. Ответ показан на рисунке 64.
Рис. 64
39. В первом равенстве справа 99, во втором справа 1, в третьем вновь 99, в четвертом вновь 1 и так далее. Выражение, в котором число 100 встречается 100 раз, равно 1.
40. а) 38 + 19 — 37 + 21 — 18 — 20 = (38 — 37) + (19 — 18) + (21 — 20) = 1 + 1 + 1 = 3. б) (2 + 4 + 6 + … + 100) — (1 + 3 + 5 + … + 99) = (2 — 1) + (4 — 3) + (6 — 5) + … + (100 — 99) = 1 + 1 + … + 1 (50 раз) = 50.
41. В результате должна получиться картинка, изображенная на рисунке 65. Порядок действий определяется начальной картинкой.
Рис. 65
42. 17 + 19 + 24 + 15 + 12 = 87. Поскольку в следующей сумме третье слагаемое такое же, а остальные увеличены на 1, то и сумма должна быть на 4 больше, то есть 87 + 4 = 91. Таким же образом получим, что третья сумма 87 — 1 — 1 — 2 — 0 — 1 = 82. Четвертая сумма 87 + 2 + 2 + 1 + 2 + 2 = 96. Пятая сумма на 3 меньше четвертой. Она равна 93. Шестая на 6 больше пятой. Она равна 99. Седьмая еще на 5 больше шестой. Она равна 104.
43. В первом выражении мы должны сложить шесть семерок и вычесть четыре семерки. Останется сумма двух семерок, то есть 14. Во втором выражении останется сумма 3 и 4. Она равна 7. Последнее выражение равно 0.
44. 13 + 12 + 27 + 19 + 18 + 11 = (13 + 27) + (12 + 18) + (19 + 11) = 40 + 30 + 30 = 100, 3 + 13 + 27 + 7 + 17 + 23 = (3 + 27) + (13 + 7) + (17 + 23) = 30 + 20 + 40 = 90, 24 + 11 + 19 + 17 + 16 + 4 = (24 + 16) + (11 + 19) + (17 + 4) = 40 + 30 + 21 = 91.
45. Вот как мог решить эту задачу маленький Гаусс. Будем объединять первое слагаемое с последним, второе с предпоследним и так далее. Но сумма первого и последнего (1 + 100), второго и предпоследнего (2 + 99) и всех пар равна 101. Всего пар будет 50. Значит, нужная сумма 50 • 101 = 5050.
46. За одно и то же время Земфира пробегает в 10 раз больше, чем проходит ее хозяин. При этом неважно, как бегает Земфира. Раз хозяин прошел 440 метров, то путь Земфиры равен 4400 метрам, или 4 километрам 400 метрам.
47. Надо провести прямую, соединяющую центры квадрата и круга. (Центр квадрата — это точка пересечения его диагоналей.)
48. Поскольку русский алфавит содержит 33 буквы, средней является буква под номером 17. Это буква «п».
49. Это вопрос: «Где ёж?» (Буквы Г, Д, Е, Ё, Ж следуют в алфавитном порядке.)
50. Это слова «спорт» и «спрут».
51. Каждый год содержит либо 365 дней, либо 366 дней (это високосный год). Разделим 10 000 на 365 с остатком. Получим 10 000 = 365 • 27 + 145. Даже учитывая високосные годы, учительнице исполнилось 27 лет, но нет еще 28 лет. Значит, ей 27 лет.
52. Из того, что сказал дедушка, следует, что этот год не високосный. Посередине будет день под номером 183. 182 дня перед ним — это первая половина года, а 182 дня после — это вторая половина года. Число дней до 1 июля 31 + 28 + 31 + 30 + 31 + 30 = 181. Значит, разговор происходил 2 июля. Этот день как раз является 183-м днем обычного года.
53. Пусть наш год обычный. Если 1 января — воскресенье, то 13 января — пятница, а также пятница — 13 октября. Если 1 января — понедельник, то пятницей будут 13 апреля и 13 июля. Если 1 января — вторник, то пятницей будут 13 сентября и 13 декабря. Если 1 января — среда, то пятницей будет 13 июня. Если 1 января — четверг, то пятницей будут 13 февраля, 13 марта и 13 ноября. Если 1 января — пятница, то пятницей будет 13 августа. И наконец, если 1 января — суббота, то пятницей будет 13 мая. Точно так же можно разобраться с високосным годом.
54. Сегодня Васе 8 лет, а Коле 2 года. Разница между ними 6 лет. Она не меняется. Когда Вася будет в 3 раза старше Коли, то на разницу придется два возраста Коли. То есть возраст Коли 3 года, а возраст Васи 9 лет. А когда Коле будет 6 лет, Васе будет 12. В 2 раза больше. Задачу можно решить также простым перебором.
55. Единственное возможное объяснение состоит в следующем. Этот школьник родился 31 декабря. А разговор происходил 1 января, при этом 31 декабря предыдущего года школьнику исполнилось 11 лет. Позавчера, 30 декабря, ему было 10 лет. В этом году ему исполнится 12 лет. А на будущий год ему исполнится 13 лет.
56. «Такая» сабля не сможет быть вложена в «такие» ножны.
57. На рисунке 66 показан возможный способ подвешивания картины (веревка не натянута). Нетрудно убедиться, что если выдернуть любой гвоздь, то картина не сможет висеть.
Рис. 66
58. Объяснение дано в тексте. Понятно, что невыпуклым является правый четырехугольник.
59. На рисунке 12 фигуры в и е не являются многоугольниками. Из оставшихся фигур выпуклым многоугольником является лишь один д. Все остальные — невыпуклые многоугольники. Остается лишь подсчитать число сторон у каждого. Можешь убедиться, что последний многоугольник и в самом деле является стодевяностодевятиугольником.
60. На рисунке 13,а 4 треугольника и 3 четырехугольника. На рисунке 13,б 9 маленьких треугольников, 3 треугольника, состоящих из четырех маленьких, и 1 треугольник большой (из 9 маленьких). Всего 13 треугольников. На этом же рисунке имеется 9 четырехугольников, состоящих из двух треугольников (это ромбы), также 9 четырехугольников из трех треугольников (трапеции), 6 четырехугольников из четырех треугольников (параллелограммы), 3 четырехугольника из пяти треугольников. И наконец, 3 четырехугольника из восьми треугольников. Всего 30 четырехугольников. На рисунке 13,в 16 маленьких треугольников, 6 треугольников, составленных из четырех маленьких, 3 треугольника, составленных из девяти маленьких, и 1 треугольник из всех маленьких. Всего 26 треугольников. На рисунке 13,г 8 треугольников (4 + 4). На рисунке 13,д 16 треугольников (8 из одного треугольника, 4 двойных и 4 из четырех треугольников) и 17 четырехугольников (рис. 67). На рисунке 13,е 26 треугольников (12 из одного треугольника, 10 двойных и 4 из четырех треугольников) и 29 четырехугольников (рис. 68).
Рис. 67
Рис. 68