61. См. рисунок 69.
Рис. 69
62. См. рисунок 70.
Рис. 70
63. 1 шестиугольник, как на рисунке 71,а, 2 шестиугольника, как на рисунке 71,б, и по четыре, как на рисунке 71,в и г. Всего 11 возможностей.
Рис. 71
64. На рисунке 72 серым заштрихованы неосвещенные части комнаты, зеленым — освещенные одной лампочкой и белые части, освещенные обеими лампочками.
Рис. 72
65. Таким многоугольником может являться пятиконечная звезда (рис. 73).
Рис. 73
66. Можно предложить приятелю спор (пари). Ты можешь положить на пол газету и встать на нее вдвоем с приятелем так, что ни один из вас не сможет дотронуться до другого.
67. Часы вновь покажут точное время, когда они уйдут вперед ровно на 12 часов, или на 12 • 60 = 720 минут. Значит, они покажут точное время через 720 суток, то есть почти через 2 года.
68. Потребуется 10 000 минут. В сутках 24 • 60 = 1440 минут. 10 000 = 1440 • 6 + 1360 = 1440 • 7 — 80. Другими словами, чтобы досчитать до миллиона, нужно почти 7 суток. По нашим подсчетам, на 80 минут или на 1 час 20 минут меньше недели. Чтобы досчитать до миллиарда, даже если до миллиона человек может досчитать за 6 дней, ему потребуется 6000 дней, поскольку 6000 = 365 • 16 + 160, то есть примерно 16 с половиной лет.
69. Как верно подсчитал Федор, «Шайба» выигрывает у «Гайки», «Гайка» — у «Винта», «Винт» — у «Шайбы» с одним и тем же счетом 5:4. Проверьте сами, составив таблицу командных матчей. Это выглядит очень странно, поэтому это полезно обдумать и обсудить.
71. За указанное время — за 12 часов — маленькая стрелка сделает 1 оборот, а большая — 12 оборотов. На 11 оборотов больше. Значит, она 11 раз обгонит часовую стрелку. Столько же раз (11) стрелки будут совпадать. Первый раз большая вновь совпадет с маленькой на втором круге. И затем совпадения будут иметь место на каждом круге большой стрелки.
73. 1111111 > 999 999, поскольку у левого числа 7 единиц, а у правого — 6 девяток. При сравнении второй пары можно перемножить числа слева, но проще «оценить», заменив каждый множитель на меньший (26 > 25, 43 > 40). Значит, 26 • 43 > 25 • 40 = 1000. Также можно поступить и при сравнении следующей пары: 71 > 69, 19 > 18, 117 > 116. Значит, первое число больше второго. В последней паре 5 • 7 = 35 < 36 = 4 • 9, 287 < 289. Следовательно, первое число меньше второго.
75. Центром квадрата является точка пересечения его диагоналей. Что такое центр окружности, объяснено в тексте. Любой отрезок, соединяющий две точки на границе (квадрата или окружности) и проходящий через центр, делится центром пополам. Именно этим свойством и обладает центр фигуры. (Если она имеет центр.) Но у окружности все точки расположены на равном расстоянии от центра, а у квадрата — нет. Вершины квадрата — дальше всего от центра. Середины сторон — ближе всего.
77. Если бы люки имели квадратные крышки и соответственно имели форму квадрата, то крышка могла бы провалиться в люк, так как сторона квадрата меньше его диагонали. Круглая же крышка не может провалиться.
78. Колышки надо вбить на расстоянии больше 12 метров. Если взять расстояние, равное 12 метрам, то будет одна точка, до которой могут дотянуться обе козы. Соответствующие круги являются касающимися.
79. См. рисунок 74, а, б, в. Место, где может пастись коза, в всех случаях закрашено.
Рис. 74
80. См. рисунок 75, а, б. Место, где может пастись коза, в обоих случаях закрашено.
Рис. 75
81. См. рисунок 76.
Рис. 76
82. На самом деле хозяин постоялого двора неправильно считает. Оба путника заплатили 26 драхм, из которых 23 драхмы были уплачены за ночлег, а 3 драхмы отданы на строительство школы.
83. Всего было 9 лепешек. Каждый съел по 3. Значит, второй съел 3 своих лепешки, и ему ничего не положено. Все деньги должен получить первый путник, у которого было 5 лепешек.
84. Первая работа выгоднее. За каждые две недели на первой работе работник будет получать на 1 драхму больше, чем на второй. Давай подсчитаем. За первые две недели на первой работе будет выплачена 1 драхма, а на второй — ничего. Считаем за 3-ю и 4-ю недели: на первой работе будет выплачено 2 + 3 = 5 драхм, а на второй — 4 драхмы. За 5-ю и 6-ю недели: на первой работе будет выплачено 4 + 5 = 9 драхм, а на второй — 8 драхм. И так будет продолжаться и дальше.
85. Если мы соединим замок барона и оливковую рощу любой линией на карте, то убедимся, что она пересекает границы владений нечетное число раз. Но идя из замка после первого пересечения границы, мы выходим из владений барона. После второго — опять попадаем в его владения, после третьего — выходим, и так далее. После нечетного пересечения мы выходим из владений, после четного — возвращаемся. Ответ: роща не принадлежит барону.
86. И «день» и «ночь» кончаются мягким знаком.
87. Автор, втора, тавро, отвар, рвота.
88. Она была повариха.
89. Просто подсчитай число букв в каждой фразе.
90.«Число букв в этой фразе равно тридцати восьми». Задача решается простым подбором.
91. Зашифровано слово «азбука» и пословица «Терпенье и труд — всё перетрут».
92. См. рисунок 77.
Рис. 77
93. Всего частей 2 + 3 + 4 = 9. Одна часть 2340 : 9 = 260. Первый брат должен получить 2 • 260 = 520 драхм, второй — 3 • 260 = 780 драхм и последний — 4 • 260 = 1040 драхм.
94. Всего частей 8. Одна часть 72 : 8 = 9 километров. В первый день туристы прошли 3 • 9 = 27 километров, а во второй — 5 • 9 = 45 километров.
95. Пусть путь, пройденный туристами в первый день, составляет 3 части, а во второй — 7 частей. Во второй день туристы прошли на 4 части больше. Одна часть 24 : 4 = 6 километров. В первый день туристы прошли 18 километров, а во второй — 42 километра.
98. Не позднее чем на седьмом шаге должно появиться число 6174, которое затем будет повторяться (7641 — 1467 = 6174). Именно это число и было написано на обратной стороне бумаги.
99. Здесь нет задачи. Это очень полезное и интересное упражнение. Советуем его делать регулярно.
100. Надо распилить третье звено с конца цепочки. Получим два куска цепочки из двух и четырех звеньев и одно распиленное. Смотри решение в таблице.
Дальше можно не объяснять.
101. За каждые сутки улитка поднимается ровно на 1 метр. Через 7 суток она поднимется на 7 метров. Затем в течение следующего дня она поднимется на 3 метра и достигнет вершины. Ответ: 7 суток и 1 день.
102. В момент выхода каравана в караван-сарай прибывают верблюды, вышедшие с другого конца 7 суток назад. Все остальные ранее вышедшие караваны еще в пути. И все они будут встречены по дороге. Также встречены будут караваны, вышедшие в путь, пока наш находится в пути, а также тот, который вышел одновременно с нашим прибытием. Всего встречных караванов 1 + 6 + 6 + 1 = 14.
103. На 6 частей. См. рисунок 78.
Рис. 78
104. Можно, например, вырезать круг из данного круга, как на рисунке 79, и перевернуть его. А можно совсем просто: вырезать в центре круга круглое отверстие нужного радиуса и закрыть вырезанным кругом имеющееся отверстие.
Рис. 79
105. Если мы сложим числа 173 и 192, то получим общее число конечностей (конечности — это хвосты и головы драконов). Но у каждого дракона 5 конечностей. Таким образом, 173 + 192 = 365 есть упятеренное число драконов. А всего драконов 365 : 5 = 73. Далее действуем, как в задаче 97. Если бы у каждого дракона было по две головы, то число голов у 73 драконов было бы 146. А у них 173. Значит, 173 — 146 = 27 — это оставшиеся головы трехголовых драконов. Получаем, что трехголовых драконов 27, а двухголовых — 46.
106. Самое простое в этой задаче — проделать опыт. Положить на стол 40 палочек (или спичек). Занумеровать их. И начинать отсчитывать: 1, 2, 3, 1, 2, 3…., всякий раз убирая палочку, на которую выпал счет 3. Если ты все правильно сделаешь, то должны остаться палочки под номерами 13 (предпоследняя) и 28 (последняя).
107. Пусть лиса сделает 3 • 7 = 21 прыжок. Так как пока лиса делает 7 прыжков, волк делает 4 прыжка, то волк за это время сделает 3 • 4 = 12 прыжков. Но 3 прыжка волка равны 5 прыжкам лисы. Значит, 12 волчьих прыжков — это 5 • 4 = 20 лисьих. Получается, что, пока лиса пробежит путь, равный 21 своему прыжку, волк пробежит путь длиной в 20 лисьих прыжков. Значит, лиса бежит быстрее.
108. На листе было написано 3. Ведь 5 — 3 + 1 = 3. А задуманное число уничтожается, когда мы его вычитаем.
109. Если бы мы не прибавляли 3, а только умножили число на 5, а затем на 2, то результат был таким же, как если бы мы исходное число сразу умножили на 10. А умножение на 10 выполняется простым приписыванием справа 0 (нуля). Но мы после умножения на 5 прибавили 3 и лишь потом умножили на 2. Значит, после первых трех операций мы приписали к нашему числу цифру 6. Затем прибавили 5. Последней цифрой будет 1, то есть на бумажке была написана единица.
110. Через 60 часов в Квашино будет полночь. И солнце светить не может.
111.Перед началом любого матча счет 0:0.
112. Вполне возможно, что карман, куда дедушка опустил карточки, был с хитростью. Например, имел потайное отделение, куда и соскользнули карточки. Из другого кармана дедушка вынул другую стопку карточек. На всех была одна и та же цифра 7.
114. Решение понятно из рисунка 80.
Рис. 80