Увлекательно о космосе. Межпланетные путешествия — страница 12 из 37

[26].


Рис. 24. Противоградовая ракета: слева – в разрезе, справа – установленная для пуска


Опыты с фоторакетами были, однако, вскоре прекращены, так как развитие аэрофотосъемки сделало применение ракет для этой цели излишним.

Одновременно с сейчас упомянутыми работами инженера Мауля велись в Германии, на полигоне Круппа, опыты полковника Унте с ракетными торпедами. Имелось в виду изобретение нового военного оружия, которое сделало бы излишними тяжеловесные пушки. Унте удалось изготовить модель, которая при 60 кг общего веса несла 40-килограммовую гранату и перебрасывала ее на расстояние 5–8 км. Такая ракета пускалась с особого лафета и получала устойчивость в полете благодаря вращению около продольной оси (с помощью пропеллера, приводимого в действие вытекающей из ракеты струей газов). Однако добиться удовлетворительной меткости попадания Унте не мог, и опыты его были прекращены.

Незадолго до войны подобные же опыты делались и с подводными торпедами (ракета хорошо горит под водою). Торпеды этого рода, осуществляя старинный проект де Фонтаны, показали хорошую скорость, большую, чем обычные торпеды, приводимые в действие сжатым воздухом. Но недостаточная меткость решила судьбу изобретения. В разразившуюся вскоре войну 1914–1918 гг. ракета существенной роли как боевое оружие не играла.

После войны наибольших успехов в изготовлении пороховых ракет высокого подъема достигли немецкие конструкторы – инженеры Зандер, Поггензе и Тиллинг. (Особняком стоят чрезвычайно важные экспериментальные исследования американского физика профессора Годдарда, о которых мы будем говорить в другом месте.)

Об опытах инженера Зандера мы уже упоминали в предыдущей главе. Ракета Поггензе (1931 г.) при весе 13 кг имела в длину 3½ м и несла с собою метеорологические приборы-самописцы, а также фотоаппарат и измеритель ускорения. Приборы были скреплены с парашютом, который при испытании ракеты автоматически раскрывался в высшей точке подъема и благополучно доставлял свой груз на Землю.

Инженер Тиллинг при своих опытах в конце 1931 г. пускал ракеты 6½ кг весом на высоту 8 км; длина ракет 190 см, диаметр – 6,5 см. Они переносились на расстояние 18 км. Он проектировал пуск ракет, снабженных гироскопическими стабилизаторами, на высоту 10–15 км для исследования стратосферы. Им же был намечен план переброски почты с материка на близлежащие острова с помощью пороховых ракет его конструкции.

Этим планам не суждено было осуществиться: в октябре 1933 г. талантливый инженер погиб при взрыве своей лаборатории.

Последней новинкой в применении пороховых ракет является использование их для почтовых надобностей. Пока это осуществлено, сколько известно, только в одном пункте Австрии, там, где гористая местность делает невозможным пользование аэропланом, а доставка почты наземным транспортом крайне медленна из-за бездорожья. Почтовую кладь (примерно из сотни отправлений) заделывают внутрь ракеты, заботясь, конечно, чтобы корреспонденция не пострадала при горении заряда. Такую почтовую ракету пускают в сторону ближайшего почтового отделения в нескольких километрах от пункта отправления. Дело налажено так хорошо, что почта берет даже заказные и служебные письма. Размеры ракеты: 25 см в диаметре и почти в рост человека в длину. Вес 30 кг, из которых 24 кг приходятся на заряд (порох особого состава, являющегося секретом изобретателя этих ракет, инженера Шмидля). Очерк истории пороховой ракеты был бы неполон, если бы мы не остановились подробнее на проекте использования пороховой ракеты в качестве двигателя для летательного аппарата – проекте Н.И. Кибальчича, вскользь упомянутом ранее. Этот важнейший эпизод в истории развития идей ракетного летания может считаться исходным пунктом звездоплавания и потому заслуживает более подробного рассмотрения.

Глава 11Летательная машина Кибальчича

Мысль о летательной машине занимала Кибальчича еще в то время, когда он жил и работал на свободе. Воздухоплавание в то время было в жалком состоянии. Люди умели подниматься над землей на воздушных шарах, но становились в воздухе игрушкой стихии; управляемых воздушных кораблей еще не существовало, и шар несло в ту сторону, куда дул ветер. Кибальчич мечтал о полном покорении воздуха, когда человек сможет совершать свой полет в желаемом направлении.

Какая сила должна быть употреблена, чтобы привести в движение такую машину? – размышлял Кибальчич. – Сила пара здесь непригодна… Паровая машина громоздка сама по себе и требует много угольного нагревания для приведения в действие. Какие бы приспособления ни были приделаны к паровой машине – вроде крыльев, подъемных винтов (пропеллеров) и пр., паровая машина не в состоянии будет поднять самое себя на воздух.

Напомним, что двигателей внутреннего горения, разрешивших впоследствии проблему авиации, в те годы еще не существовало. Вот почему от паровой машины мысль революционера-изобретателя обратилась сразу к электродвигателю.

В электродвигателях гораздо большая доля переданной энергии утилизируется в виде работы, но для большого электродвигателя нужна опять-таки паровая машина. Положим, что паровая и электродвигательная машины могут быть установлены на земле, а гальванический ток может по проволокам, наподобие телеграфных, передаваться воздухоплавательному прибору, который, скользя, так сказать, особой металлической частью по проволокам, получает ту силу, которою можно привести в движение крылья или другие подобные приспособления снаряда. Подобное устройство летательного снаряда во всяком случае было бы неудобно, дорого и не представляло бы никаких преимуществ перед движением по рельсам.


Биографические сведения о Н.И. Кибальчиче (из показаний Кибальчича 20 марта 1881 г.)


Не может ли, однако, человек обойтись совсем без механических источников энергии, а летать силою своих мускулов, как ездит велосипедист? Мысль Кибальчича работала и в этом направлении. Ему было известно, что

…многие изобретатели основывают движение воздухоплавательных снарядов на мускульной силе человека. Беря типом устройства своих проектируемых машин птицу, они думают, что можно устроить такие приспособления, которые, будучи приведены в движение собственной силой воздухоплавателя, позволят ему подниматься и летать по воздуху. Я думаю, что если и возможно устроить такого типа летательное приспособление, то оно все-таки будет иметь характер игрушки и серьезного значения иметь не может.

«Какая же сила применима к воздухоплаванию?» – снова и снова задавал себе вопрос Кибальчич и наконец напал на мысль, которая представлялась ему единственным решением задачи. Порох! Сила взрывчатых веществ.

Никакие другие вещества в природе не обладают способностью развивать в короткий промежуток времени столько энергии, как взрывчатые.

С действием этих веществ Кибальчич был знаком прекрасно. Еще до вступления в партию «Народная воля» (1879 г.) он, предвидя, что партии в ее террористической борьбе придется прибегнуть к таким веществам, как динамит, решил изучить приготовление и употребление этих веществ.

С этой целью, – писал он в своих показаниях, – я предварительно занимался практически химией, а затем перечитал по литературе взрывчатых веществ все, что мог достать. После этого я у себя в комнате добыл небольшое количество нитроглицерина и таким образом практически доказал возможность приготовлять нитроглицерин и динамит собственными средствами.

Кибальчич изобрел и сам изготовил те бомбы, которые были брошены под карету Александра II. Для этого ему «приходилось придумывать много новых, нигде не употреблявшихся приспособлений».

Принимал он деятельное участие и в подготовке подкопа на Садовой улице, где должен был проехать царь. Он рассчитал, «какое количество динамита необходимо для того, чтобы взрыв, во-первых, достиг цели, а во-вторых, не причинил вреда лицам, случившимся на тротуаре при проезде государя, а также прилежащим домам».

Но каким образом, – спрашивал Кибальчич, – можно применить энергию газов, образующихся при воспламенении взрывчатых веществ, к какой-либо продолжительной работе? Это возможно только под тем условием, если та громадная энергия, которая образуется при горении взрывчатых веществ, будет образовываться не сразу, а в течение более или менее продолжительного промежутка времени.

При таких условиях работает прессованный порох в ракетах. Кибальчич ясно представлял себе причину полета ракеты – гораздо лучше, чем некоторые специалисты нашего времени, наивно полагающие, будто ракета струей вытекающих из нее газов отталкивается от окружающего воздуха. Он понимал, что окружающая среда только задерживает полет ракеты, движущей же силой являются газы, напирающие на ракету изнутри.

Размышляя в этом направлении, Кибальчич пришел к идее реактивного самолета, то есть летательной машины, устроенной по принципу ракеты. Надо было разработать эту мысль, изложить ее в виде проекта и опубликовать. Но революционная деятельность настолько поглотила все силы Кибальчича, что для подобной ракеты у него не нашлось времени. Наступило событие I марта: царь убит бомбой Кибальчича, сам Кибальчич схвачен и заключен в Петропавловскую крепость; его ожидает смертная казнь. Чем же занят революционер в последние дни своей жизни?

Когда я явился к Кибальчичу как назначенный ему защитник, – рассказывал суду В.Н. Герард, – меня прежде всего поразило, что он был занят совершенно иным делом, ничуть не касающимся настоящего процесса. Он был погружен в изыскание, которое он делал о каком-то воздухоплавательном снаряде; он жаждал, чтобы ему дали возможность написать свои математические изыскания об этом изобретении. Он их написал и представил по начальству.

Этот замечательный документ сохранился до наших дней