Увлекательно о космосе. Межпланетные путешествия — страница 30 из 37

Вычисляя скорость, с какой тело должно покинуть Землю для удаления в бесконечность, мы принимали, что Земля – единственный центр, притяжение которого тело должно при этом преодолеть. На самом же деле приходится считаться также и с притяжением Солнца. Чтобы учесть это обстоятельство, установим сначала зависимость между скоростью тела на орбите и другими величинами.



Рис. 59. К расчету скорости полета


По второму закону Кеплера площади, описываемые радиусом-вектором в равные времена, равны. Пусть тело (планета) движется вокруг Солнца по эллипсу с полуосями а и b; период обращения Т секунд, секундная скорость υ, радиус-вектор r; тогда для точек перигелия и афелия имеем равенство



где левая часть есть выражение (приближенное) для площади, описываемой радиусом-вектором за 1 с, a πab – площадь эллипса. Имеем:



Пусть теперь тело (звездолет, планета), движущееся вокруг Солнца по круговой орбите радиуса r, должно перейти в точке А своего пути на эллиптическую орбиту с полуосями а и b. Определим, какое для этого необходимо изменение скорости.

Из третьего закона Кеплера следует, что отношение квадрата периода обращения планеты к кубу ее среднего расстояния от Солнца (или большой полуоси) есть величина постоянная; для планет Солнечной системы эта постоянная равна (в единицах системы см – г – с)



откуда



Отсюда имеем скорость у кругового движения около Солнца на расстоянии г.



Обращаясь к эллиптической орбите, имеем прежде всего



Из формулы (5) мы знаем, что скорость υэ движения по эллиптической орбите в точке А



Так как скорость υK движения по круговой орбите (см. (6)



то из сопоставления формул (6) и (7) имеем



По этой формуле и вычисляется скорость, какую необходимо сообщить звездолету, чтобы с круговой орбиты он перешел на эллиптическую или удалился в бесконечность. В последнем случае полагаем большую полуось а эллипса равной бесконечности. Имеем



то есть для удаления звездолета с круговой орбиты в бесконечность необходимо, чтобы круговая скорость его увеличилась в √2 раз. Так, для удаления с земной орбиты (соответствующая скорость 29,6 км/с) в бесконечность нужна скорость


υ =29,6√2 = 41,8,


то есть приращение скорости 41,8 – 29,6 = 12,2 км/с.

Теперь мы можем вычислить скорость, какая должна быть сообщена звездолету для преодоления притяжения Земли и Солнца и, следовательно, для свободного удаления с Земли в бесконечность. Чтобы преодолеть притяжение, нужна начальная скорость 11,2 км/с, то есть работа («живая сила») для каждого килограмма веса звездолета



Чтобы преодолеть солнечное притяжение, нужна работа (υ = 12 200 м/с)



Общая работа для преодоления совокупного притяжения Земли и Солнца равна



Искомая скорость x получается из уравнения:



откуда



Вычислим теперь начальные скорости, необходимые для достижения планет Марса и Венеры. Для Марса



Поэтому из формулы (8) имеем



то есть нужна добавочная скорость 32,6 – 29,6 = 3 км/с.

Искомая скорость для преодоления совокупного притяжения Земли и Солнца вычисляется, как сейчас было показано:



Таким же образом определяем, что для достижения Венеры нужна начальная скорость, не меньшая



Продолжительность перелетов

Перелет на Венеру. Продолжительность этого перелета, при условии минимальной затраты горючего, определится, если будет известен период обращения воображаемой планеты по эллипсу TV (рис. 60). Если S – Солнце, то ST = 150 × 106 км, SV = 108 × 106 км; среднее расстояние воображаемой планеты от Солнца равно ½ (150 + 108) × 106 = 129 × 106 км. По третьему закону Кеплера



где x – продолжительность обращения воображаемой планеты, а 225 суток – продолжительность обращения Венеры;


х = 225√1,7 = 293 сут.


Значит, полет в один конец займет 147 суток.

Перелет на Марс. Время перелета определяется из пропорции:



откуда


у = 519 сут.


Значит, перелет в один конец продлится 259 суток.



Рис. 60. Маршрут перелета с Земли (Т) на Венеру (V)

5. Внеземная станция

Для относящихся сюда расчетов воспользуемся рис. 54. Круг радиуса г пусть изображает земной шар, а эллипс – тот путь, по которому звездолет из точки А земной поверхности (экватора) долетает до круговой орбиты искусственного спутника.

Прежде всего вычислим, каков должен быть радиус круговой орбиты (не изображенной на чертеже) этого спутника, чтобы время его обращения равнялось земным суткам. Применим третий закон Кеплера, зная, что Луна обходит Землю в 27,3 суток на расстоянии 60,3 земного радиуса от центра Земли:



откуда



Итак, внеземная станция должна находиться в расстоянии 6,66 земного радиуса от центра Земли, чтобы период обращения равнялся 24 ч.

Скорость, которую нужно сообщить на Земле звездолету, чтобы он достиг орбиты такого искусственного спутника, есть скорость в точке А эллипса (рис. 59). Вычислим ее по формуле (8):



Здесь υК скорость свободного кругового обращения небесного тела около центра Земли на расстоянии 1 земного радиуса, то есть 7,92 км/с. Следовательно, искомая скорость υА отлета


υа = 7,92 × 1,32 = 10,5 км/с[48].


С какой скоростью звездолет достигнет орбиты искусственного спутника? Другими словами, какова скорость в точке В эллипса, противолежащей точке А? Находим ее, пользуясь вторым законом Кеплера: так как площади, описываемые радиусами-векторами в 1 с, равны, то


10,5 × г =x × 6,66 г,


откуда



Сравним ее со скоростью движения внеземной станции по своей круговой орбите; последняя скорость, очевидно, в 6,66 раза больше скорости движения точек земного экватора (0,465 км):


0,465 × 6,66 = 3,1 км/с.


Значит, звездолету понадобится еще дополнительная скорость в 3,1–1,6 = 1,5 км/с, чтобы пристать к внеземной станции.

Далее, скорость, с какой звездолет должен покинуть внеземную станцию для достижения, например, орбиты Луны, вычислим по формуле (8), вообразив соответствующий эллипс, охватывающий орбиту станции и касающийся изнутри орбиты Луны:



Так как скорость станции с) равна 3,1 км/с, то искомая скорость равна 1,34 × 3,1 = 4,1 км/с.

Это всего на 300 м меньше той скорости, какая нужна здесь для полного освобождения от земного притяжения (3,1 × √2 = 4,4 км|.

Если принять во внимание, что сама станция-спутник обладает скоростью в том же направлении, то для достижения Луны с внеземной станции понадобится лишь дополнительная скорость в 4,1–3,1 = 1 км/с. Соответствующее отношение масс заряженной и незаряженной ракет при скорости вытекания газа 4000 м равно



Масса горючего должна составлять менее – ½ массы ракеты после взрывания. Даже если мы желаем, чтобы звездолет мог возвратиться на внеземную станцию, то есть чтобы он сохранил запас горючего, достаточный для торможения (0,28 окончательной массы), мы должны снабдить его первоначально запасом горючего, составляющим только 0,4 веса всей заряженной ракеты. Отсюда очевидна огромная выгода создания внеземной станции в смысле облегчения остальных задач звездоплавания.

6. Давление внутри пушечного снаряда

Нам придется пользоваться лишь двумя формулами равноускоренного движения, именно:

1. Скорость υ в конце t-й секунды равна at, где а – ускорение:


υ = at.


2. Пространство S, пройденное в течение t секунд, определяется формулой:



По этим двум формулам легко определить (разумеется, только приблизительно) ускорение снаряда, когда он скользил в канале исполинской Жюль-Верновой пушки.

Нам известна из романа длина пушки – 210 м: это есть пройденный путь 5. Романист указывает и скорость снаряда у выхода из орудия – 16 000 м/с. Данные эти позволяют нам определить прежде всего величину t — продолжительность движения снаряда в канале орудия (рассматривая это движение как равномерно ускоренное). В самом деле:



откуда



Итак, оказывается, что снаряд скользил внутри пушки всего 1/40 долю секунды.

Подставив в формулу υ = at, имеем



Значит, ускорение снаряда при движении в канале равно 640 000 м/с за секунду, то есть в 64 000 раз больше ускорения силы земной тяжести.

Какой же длины должна быть пушка, чтобы ускорение это было всего в 20 раз больше ускорения тяжести (то есть равнялось 200 м/с2)?

Это – задача, обратная той, которую мы только что решили. Данные: а = 200 м/с2; у = 11 000 м/с (при отсутствии сопротивления атмосферы такая скорость достаточна).

Из формулы υ = at имеем: 11 000 = 200t, откуда t = 55 с.


Из формулы получаем, что длина пушки должна равняться , то есть круглым счетом около 300 км.

7. Невесомость свободно падающих тел

Положение, что свободно падающее или брошенное вверх тело ничего не весит, представляется многим настолько необычным и неожиданным, что его готовы принять за физический софизм (вывод правдоподобный, но ложный). Уместно будет поэтому указать на несколько опытов, могущих подтвердить правильность этого утверждения.

Первый опыт подобного рода, насколько мне известно, выполнен был знаменитым Лейбницем. Он привешивал к чашке весов довольно длинную, наполненную водой трубку; на поверхность воды помещал металлический шарик, пустой внутри и закрытый. Устанавливал равновесие, затем открывал отверстие плавающего шарика, шарик наполнялся водой и падал вниз. Во время движения шарика соответствующая сторона весов становилась легче, чашка с разновесками перетягивала (