В небе завтрашнего дня — страница 9 из 45

рее.

Однако ведь далеко не всегда целесообразен полет на больших высотах. А кроме того, сам набор высоты, происходящий на меньшей скорости, требует затраты значительного количества топлива. Поэтому было бы целесообразно создать такой двигатель, который развивал бы тягу, потребную для полета на сравнительно малых высотах со скоростью, © 2–3 раза превосходящей скорость звука, и расходовал мало топлива.


17* См. главу IV «Двигатель-рекордист».


Аэродинамические свойства реактивных самолетов должны быть высокосовершенными (двухдвигательный военный самолет конструкции А. С. Яковлева).


Для решения этой задачи остается, очевидно, один путь — повышение экономичности двигателей, уменьшение удельного расхода топлива. Как хорошо было бы, например, если бы двигатели сверхзвукового полета будущего расходовали раза в два меньше топлива на килограмм тяги, чем современные турбореактивные двигатели, то есть примерно по 0,5 килограмма в час! Но, увы, в действительности, как мы знаем, дело обстоит как раз наоборот: по мере роста скорости полета удельный расход топлива не только не снижается, а наоборот, сильно возрастает. Значит, и этот путь не приводит к цели.

Где же выход? Или задача вообще неразрешима?

Решая ее, авиационная наука и техника ищут новые, более совершенные топлива. Понятно, что от вида топлива зависит очень многое. Если топливо содержит больше энергии, выделяющейся при сгорании в двигателе, то, очевидно, и тяга двигателя будет больше. Но важна не только эта полезная энергия, или, как говорят, теплотворность — калорийность — топлива. Теория и опыт подсказывают, что для увеличения скорости истечения газов из двигателя и, соответственно, его тяги молекулярный вес продуктов сгорания должен быть возможно меньшим 18*.

Какие же возможности улучшения топлив указывает химия?

Авиация всегда работала и работает на углеводородных топливах, получаемых из нефти. В век авиации поршневой это был бензин, теперь — главным образом керосин. А можно ли из нефти получить лучшие топлива?

Следует прямо сказать, что радикального улучшения топлива этим путем добиться нельзя. Чтобы решить задачу, нужно основательно «перетряхнуть» всю периодическую систему элементов Менделеева. Наиболее подходящими могут оказаться топлива на базе совершенно необычных, на первый взгляд, химических элементов. Вот такие-то «экзотические» топлива и исследуются в настоящее время.

Первые результаты оказываются довольно обнадеживающими. Некоторые из наиболее перспективных топлив будущего позволят существенно увеличить продолжительность и, следовательно, дальность полета. Кстати сказать, некоторые из таких «экзотоплив» значительно улучшают также сгорание на большой высоте. Понятно, что для успешного применения этих топлив придется решить немало задач, например удешевить их производство, устранить ядовитость некоторых из них, коррозийное воздействие на металлы других и т. д. Но можно не сомневаться, что в авиации завтрашнего дня «экзотоплива» займут почетное место.

Особенно интересны среди них так называемые свободные радикалы. Это — электрически нейтральные частицы, обломки молекул, обладающие большой химической энергией, которая выделяется при воссоединении их снова в молекулы. Радикалами являются и атомы элементов, обычно существующих в виде молекул, например атомы водорода, кислорода, азота. Когда молекула водорода расщепляется на атомы, то на это затрачивается большая энергия, чаще всего — электрическая (такое расщепление осуществляется обычно в электрическом разряде). Стоит атомам снова образовать молекулу водорода, как та же энергия выделяется уже в виде тепла. Если подобное воссоединение (или, как говорят, рекомбинация) молекул произойдет в камере сгорания двигателя, то из него наружу через сопло будет вытекать струя водорода с огромной скоростью, в несколько раз большей, чем у обычных топлив.

Но увы, использовать это «экзотопливо» очень непросто. Все радикалы обычно так стремительно рекомбинируют, что их сохранение в «нетленном» виде практически невозможно. Только в самое последнее время появились основанные на ряде удачных опытов надежды, что удастся сохранять свободные радикалы, в том числе и атомы водорода, замораживая их почти до абсолютного нуля.

Практически это, конечно, осуществить трудно, но возможно. А это главное. Можно думать, что свободные радикалы, в частности атомарные топлива, займут почетное место среди «экзотоплив» будущего.

Однако и эти топлива не решают все же задачи увеличения продолжительности полета. А между тем современная наука и техника знают, как решить эту проблему. Знают, потому что известно и уже применяется топливо, теплотворность которого не просто больше, чем у современных топлив, но больше в миллионы раз. Ну, конечно, речь идет о ядерном горючем, об атомной энергии!

Атомный двигатель в авиации смог бы произвести настоящую революцию, вторую после появления реактивных двигателей. Возможности авиации выросли бы неизмеримо. Самое главное, стал бы возможным сколь угодно длительный сверхзвуковой полет, тогда как сейчас в авйации существует своеобразное «золотое правило рычага». Оно гласит, что чем быстрее осуществляется полет, тем менее продолжительным он является.

Атомный двигатель снимет это ограничение, выведя авиацию из того заколдованного круга, в котором она находится. Неудивительно, что работа над созданием атомного авиационного двигателя так настойчиво ведется в ряде стран. Нет сомнений, что он будет создан и займет подобающее ему место в авиации завтрашнего дня.

Как же может выглядеть атомный авиационный двигатель?

Пожалуй, прежде всего напрашивается устройство атомного реактивного двигателя, получившего название «псевдоракеты». Действительно, что могло бы быть проще атомного двигателя, из которого наружу вытекали бы осколки ядер, образующиеся при распаде ядерного горючего — урана или плутония! «Псевдоракетным» он называется потому, что в действительности такой двигатель создать нельзя. Этому препятствует ряд трудностей, но решающей является одна: «псевдоракета» сколько-нибудь значительной тяги могла бы существовать лишь ничтожные доли секунды, так как она практически мгновенно… испарилась бы. Это легко объяснимо: чтобы тяга была большой, из двигателя должно вытекать наружу каждую секунду много продуктов атомного распада. Но ведь один грамм ядерного горючего соответствует почти двум тоннам керосина или бензина. Значит, в таком двигателе выделялось бы огромное количество тепла, соответствующее сгоранию колоссальных количеств бензина. Неудивительно,’ что двигатель испарится.

Выходит, что «псевдоракета» может существовать лишь при очень малых тягах. Но нужен ли такой двигатель? В условиях атмосферы, конечно, не нужен — он не сможет обеспечить полет самолета.

Другое дело — на огромных высотах, где воздуха нет, а еще лучше — на таких расстояниях от Земли, где ее притяжение уже почти не сказывается. Вот в таких условиях и длительная малая тяга может оказаться полезной. Что же, в астронавтике и этот случай может иметь место.

Авиацию же может заинтересовать только атомный двигатель большой тяги и мощности. Такие двигатели тоже могут быть созданы. Но в этом случае атомная энергия должна быть неизбежно превращена сначала в энергию тепловую, а уж это тепло будет нагревать рабочее тело двигателя. Так что атомный реактор (или атомный котел, как его еще называют) просто займет место камеры сгорания обычного двигателя. По такой схеме могут быть созданы атомные двигатели турбореактивные, турбовинтовые, прямоточные и другие. Некоторые из этих двигателей, вероятнее всего вначале турбовинтовые, а может быть и турбореактивные, и будут созданы в первую очередь. Над их созданием трудятся многочисленные конструкторские коллективы в разных странах. Например, по данным иностранной печати, в США уже работал первый атомный турбореактивный двигатель и уже летал первый самолет с атомным реактором на борту. Как видно, не за горами и день первого полета первого атомного самолета.

Конечно, подобный самолет будет обладать не одними только достоинствами. Так в технике не бывает. И недостатки атомного самолета будут нешуточными. Главные из них связаны с опасным для человека радиоактивным излучением работающего реактора. Специальная «биологическая» защита от этого излучения в виде экранов и оболочек из разных материалов должна весить десятки тонн. Поэтому атомный самолет должен быть огромной машиной весом не менее 100–150 тонн. Но ведь подобным взлетным весом самолета авиацию уже не удивишь!

Особенно страшной оказывается угроза аварии атомного самолета при посадке. Вредные радиоактивные вещества, накапливающиеся в реакторе при его работе, могут в этом случае рассеяться по большой площади, сделав ее неприступной для людей. Такая катастрофа будет напоминать последствия от взрыва атомной бомбы. Вот почему вряд ли атомные самолеты найдут применение в гражданской авиации, по крайней мере первое время, пока не будет устранена эта ужасная опасность 19*.

Конечно, термоядерный двигатель, если б удалось его создать, имел бы замечательные перспективы применения в авиации. В нем, как известно, должен был бы происходить не цепной процесс распада атома урана или плутония, а процесс синтеза, слияния атомов водорода или его тяжелых изотопов — дейтерия и трития — с образованием атомов гелия или лития. Мало того что при таком процессе выделяется раз в 7-10 больше атомной энергии, чем при распаде атомов. Термоядерный авиационный двигатель мог бы обладать и другими замечательными преимуществами…

Мог бы… Но в настоящее время неясно даже принципиально, можно ли осуществить управляемую термоядерную реакцию, приручить «водородного зверя», как в свое время был приручен «зверь атомный». Ведь в водородной бомбе сначала происходит взрыв обычной атомной бомбы, а потом уже начинает идти термоядерный процесс. Без этого «атомного запала» ничего не выходит — нужны такие температуры и давления, которые только в атомном взрыве и существуют. Не взрывать же атомную бомбу в термоядерном двигателе!..