Ни пятый постулат, ни противоположное ему утверждение («гипотеза острого угла» — в терминологии Ламберта) не вытекают из остальных аксиом. Они совершенно независимы. Какое именно выполняется в нашей вселенной — вопрос опыта.
Стоило ясно сформулировать себе эти очень вроде бы простые мысли, стоило поверить, что все так оно и есть. И… остальное было дело техники.
Математик такого дарования, как Ламберт, сравнительно просто мог доказать еще несколько десятков теорем, мог и без особого труда систематизировать эти теоремы — мог построить всю систему неевклидовой геометрии.
А теперь остановимся на мгновение.
Законы научного творчества — вещь смутная. Иногда к открытию приходят одним путем, иногда совсем отличным; бывает, приходят почти случайно, бывает, что открытие венчает десятилетия проклятого напряженного труда. Бывает всякое. Но один закон непреложен.
Лет через пятьдесят (от силы сто) любое супергениальное провидение — непонятное, запутанное, странное и поразительное для современников — кажется естественным, простым и едва ли не тривиальным.
Чтобы оценить значение той или иной работы, надо попытаться отбросить весь комплекс знаний, накопленных со времени ее появления, и мысленно представить себя в той эпохе.
Попробуем же вообразить себя геометром конца XVIII, начала XIX столетия, исследующим пятый постулат.
С ранних лет нас учат, что геометрия Евклида — самое совершенное создание человеческого разума. Нас не только учат, мы сами с годами все больше подчиняемся завораживающей логике доказательств, погружаемся в холодную красоту чертежей, лемм, теорем — в призрачное царство логики и интеллекта.
Мы живем в этом замкнутом мире, и единственные законы, управляющие нашим сознанием, — законы этого мира.
Геометрия давно уже не представляется нам тем, чем она была когда-то в дряхлой древности, «наукой об измерении земли — землемерием». Вопрос о ее реальности, о ее практическом осуществлении в нашем мире решен столь давно, что сейчас он никого не заботит.
Геометрия давно уже воспарила от грешной земли к горным высотам идеальной абстракции.
Сама мысль, что геометрию все еще можно и должно проверять опытом, что геометрия, по существу, один из разделов физики, не может прийти нам на ум, потому что еще в самые первые дни обучения мы узнали, что геометрия верно служит уже несколько тысяч лет.
Да, в последнее время вся система аксиом подвергается некоторой критике.
Да, пресловутый пятый постулат шокирует, и довольно серьезно, наши эстетические чувства.
Но не более.
Никаких сомнений в справедливости пятого постулата у нас нет и быть не может. Мы сомневаемся лишь в том, что это постулат. Мы лишь подозреваем, что в аксиомы затесалась теорема.
Ставить под сомнение пятый постулат вообще — означает усомниться в геометрии. А если так, то столько же оснований усомниться, например, в аксиоме: «Через две точки проходит одна, и только одна, прямая».
Или в любой другой. Можно подвергнуть ревизии и понятие линии. И арифметические аксиомы. Можно все идеальное, античных пропорций здание превратить в бесформенное нагромождение обломков. Можно. Но это работа варвара, гунна, а отнюдь не математика.
Нет ничего более совершенного в мире, нежели геометрия, и лишь один небольшой изъян слегка смущает нас — пятый постулат.
Что касается других аксиом — они настолько очевидны, что сколь-нибудь серьезных вопросов с ними не может быть связано. Легкие изменения, более отточенные формулировки — да, это возможно. Но малоинтересно в конце концов. Так мы думаем. Так думали математики всех стран 25 веков до нас. Отказаться от нашей веры — означает отказаться от всего.
Мы стремимся к красоте и гармонии в нашей евклидовой геометрии, к окончательной отделке здания. Но менее всего думаем о разрушении.
И мы убеждены: допустить, что в геометрии Евклида можно изменить хоть одну аксиому, не придя при этом к ужасной нелепости, — значит подорвать все.
Нужна одна мысль, одна фраза, но мысль, совершенно меняющая все мировоззрение.
Глава 7Неевклидова геометрия. Решение
На 1911 год библиография по неевклидовой геометрии составляла список в 4200 работ. Сейчас это число, можно думать, приближается к 20–25 тысячам.
Из них не меньше тысячи трудов историко-биографического характера.
К сожалению, я не нашел точных цифр, но оценки, приведенные выше, основаны на столь жестких гипотезах, что реальные цифры должны быть существенно выше.
Примем за основу тысячу.
Вероятно, не менее двухсот книг и статей посвящены исключительно Лобачевскому.
Спрашивается: зачем же еще?
И автор должен признаться, что трагический вопрос этот не раз и не два возникал во всем своем грозном величии до начала работы, в ее процессе и после ее окончания.
Можно, конечно, утешаться тем, что проблемы подобного сорта неизменно возникают, о чем бы ты ни взялся писать.
И они не слишком оригинальны.
Примерно в 1968 году до н. э. неведомый древнеегипетский пессимист и скептик уныло сетовал: «О если бы я мог сказать нечто такое, что уже многократно не говорилось бы до меня!»
Но утешение это малое. Тем более что за четыре тысячи лет поток печатных строк почти затопил человечество, хотя, если верить классикам, истинно великая книга создается раз в столетие. Однако подобными категориями разумному человеку средних лет (примерно таким представляет себя автор) мыслить не приходится.
И тогда волей-неволей нужно ответить самому себе: «Зачем?»
Что могу добавить я — автор этой книги — ко многим и многим томам, посвященным истории геометрии вообще, неевклидовой геометрии и общей теории относительности в частности?
Во-первых, поставим довольно неприятную точку над «и». Эта книга поверхностна. Предельно поверхностна. Она и не может быть иной.
Даже отбросив чисто специальные вопросы, нужно было бы затратить года два напряженного каждодневного труда, чтобы перерыть и просмотреть главнейшие биографические источники. Но этого, безусловно, недостаточно. Добросовестный и серьезный биограф должен внимательно изучить все работы тех людей, о которых идет разговор, должен кропотливо исследовать реакцию их научных собратьев, должен… бог его знает, что он еще должен.
Кстати, у Лобачевского такой биограф есть.
Академик В. Ф. Каган написал великолепную и серьезную биографию Лобачевского. Правда, быть может, слишком серьезную. Она написана не очень доступно.
Как дилетант в математике (а также по многим другим причинам), я понимал, что не смогу конкурировать в смысле серьезности и квалификации с В. Ф. Каганом. А также с многими другими биографами и исследователями как Лобачевского, так и других ученых, о которых идет здесь речь.
Так зачем все же я пишу?
Знать это было совершенно необходимо. Иначе все эти листы не были бы написаны. (Возможно, это и был наилучший вариант.)
Но я утешил себя тем, что никто еще не писал обо всех героях этой истории как о людях. Не как о величайших, гениальнейших… и т. п. математиках, а как о нормальных (точнее — почти нормальных) людях.
И конечно, я пытался написать так… чтобы передать все… что… Короче, как вы видите, от полноты чувств автор не в состоянии продолжать.
Вот обо всем этом «он» и пытался написать здесь.
И о работе.
О настоящей работе настоящих мужчин.
Как автор-популяризатор, я не могу упустить возможность использовать заслуженную и проверенную (особенно для молодежной литературы) терминологию.
Сильные мужчины уверенно идут по экранам и страницам.
Сильные мужчины бьют морды нехорошим негодяям и покоряют очаровательных девушек с тонкими спортивными фигурками и неспортивным интеллектом.
Сильные мужчины приезжают из глухих деревень в столицу и покоряют ее, как и девушек.
Сильные мужчины уезжают из столицы в провинцию и покоряют ее так же, как… (см. выше).
Сильные мужчины скрывают сильные чувства под маской незначительных внешне слов.
Сильные мужчины порой сильно выпивают в крайне тяжелую минуту; это обязательно, но нехарактерно.
Сильные мужчины покорили всех и вся, и посему автор тоже обуреваем стремлением писать о настоящих мужчинах.
Настоящих. А не о героях, скажем, Эриха Марии Ремарка, которого, да простится мне, я недолюбливаю и полагаю несколько дамским писателем. Пишет, впрочем, он свободно и увлекательно, а «На Западном фронте без перемен» — просто прекрасная книга.
Я еще раз прошу прощения, что отдаю дань моде и ввязываюсь в литературные дискуссии, но, честно признаюсь, довольно утомительны сильные разочарованные герои, кочующие по искусству уже несколько тысяч лет.
Действительно, прародитель этой когорты, пожалуй, вавилонский Гильгамеш.
Итак, о работе.
И о людях. Все это уже я вроде бы объяснял раньше. Но ничего, можно повториться. Именно о людях, а не о гениях.
«Гениев» я тоже не слишком люблю.
Но существует закоренелая, неистребимая традиция. Когда начинают писать о Лобачевском, Эйнштейне, Гауссе, то со страниц так и светит тот самый голубой, преданный блеск глаз, что вспыхивал в глазах Кисы Воробьянинова при общении с Остапом Бендером.
Преклонение это в общем продиктовано хорошими чувствами, и, бесспорно, люди эти, как правило, заслужили его.
Наконец — спешу оправдаться — я и не думаю сопоставлять О. Бендера с Гауссом, например.
Тем не менее подобный стиль унижает и автора, и читателя, и ученых.
А если эти ученые (вспомним старика Пифагора) нуждаются в подобных биографиях, то пусть их пишет кто-нибудь еще. У меня нет к ним ни уважения, ни симпатии.
Я рискну высказать предельно оригинальную мысль.
В первую очередь человек должен быть человеком. И даже такая мелочь, как тяжелый и вздорный характер ученого, может погубить всю симпатию к нему.
Так я сам не могу понять, какие чувства вызывает у меня Янош Бояи[4]