Вероятно, что-то очень похожее на весь этот эпизод имело место в действительности. Возможно, он точен буквально. И Чаплин, конечно, писал так, как он все воспринял. Но это ничего не меняет. Если это правда, то лишь крохотная ее частица.
Бессознательно, вероятно, даже независимо от сознания, Чаплин воспринял весь рассказ как кинорежиссер. И вот перед нами набросок, бесспорно, очень эффектного, но, увы, неглубокого сценария.
А теперь я займусь тем самым, что столь сурово и усердно предавал анафеме.
Очень поверхностно и потому неизбежно искаженно буду рассказывать об общей теории относительности и ее взаимоотношениях с геометрией.
Руководящих идей у Эйнштейна было две. Одна на первый взгляд вообще не имеет отношения к геометрии. Это вопрос о лифте. Или, иначе, вопрос о равенстве инертной и гравитационной масс. И это единственный экспериментальный факт, на основе которого была создана вся теория.
Ничего более поразительного история науки не знает.
Приходится пояснить, что такое инертная и гравитационная массы.
Второй закон Ньютона известен всем.
Я, правда, подозреваю, что истинное понимание и этого и остальных законов и вообще основ классической механики отсутствует у большинства читателей. К сожалению, школьные программы таковы, что, кроме нескольких чисто формальных манипуляций с законами Ньютона, от учеников ничего не требуется.
Между тем — это я готов повторять до бесконечности — до конца понять основы классической физики — означает одновременно почти полностью подготовить себя к восприятию, например, теории относительности. Потому что, как только понятия пространства, времени, силы и массы перестанут существовать как туманные, чисто интуитивно ощущаемые объекты, как только станет ясен их точный смысл, та или иная физическая теория предстанет как следствие определенной системы аксиом. Выбор же аксиом определяется экспериментом.
Автор должен признаться, что сейчас затронуто его больное место, и если уж здесь для нас невозможен сколько-нибудь ясный анализ основных понятий физики, настоятельно рекомендует найти его в соответствующих книгах.
А сейчас предположим, что второй закон Ньютона не только известен, но и понятен всем.
Коэффициент пропорциональности между силой и ускорением m — это масса — определяет инертность данного тела. Мы и будем далее обозначать ее масса инертная — mинерт.
Закон всемирного тяготения Ньютона относится к гравитационному взаимодействию тел.
Заранее, априори, нет абсолютно никаких оснований, нет ни малейшего намека, что формула, определяющая силу взаимодействия, должна как-то зависеть от инертной массы. Для классической физики это куда более неожиданный и необъяснимый факт, чем, например, зависимость числа свадеб во Владивостоке от погоды у берегов Антарктики.
Во втором случае легко протянуть логическую цепочку: на Владивосток базируется китобойная флотилия.
В случае же тяжелой и инертной масс ясности не было до Эйнштейна.
Был удивительный экспериментальный факт. Все, и первым Ньютон, конечно, отмечают удивительное совпадение. И до начала XX столетия было поставлено много экспериментов. Последние из них — опыты Этвеша поразительны по своей точности. Идея всех опытов предельно проста, и мы сейчас ее разберем. Запишем закон тяготения.
Из осторожности массы будем писать так — mтяж — масса тяжелая.
Потому что мы не знаем, есть ли эти массы то же, что и mинерт. Мы хотим найти, каким опытом можно это проверить. Итак:
F = γ(m1тяжm2тяж)/r2.
Рассмотрим теперь конкретный случай свободного падения тела на землю.
Сила, заставляющая тело падать, — сила гравитационного взаимодействия — сила тяготения.
С другой стороны, если нам известно ускорение и инертная масса падающего тела, например маленького шарика, мы можем найти эту силу при помощи второго закона Ньютона. Итак, есть два равенства;
1) F = γ(mтяжMтяж)/r2.
Mтяж — здесь «тяжелая» масса Земли, а r2 — расстояние от нашего шарика до центра Земли. Еще Ньютон установил: массивный шар притягивает с такой силой, как если бы вся его масса была сосредоточена в центре. Это была уже чисто математическая задача.
2) F = mинерт · g,
где g — ускорение свободного падения.
Объединяя их, получаем:
g mинерт/mтяж = γ Mтяж/r2.
Если mинерт = mтяж для всех мыслимых тел; если они равны у стали, у дерева, у газов, у жидкостей, у радиоактивных элементов, у полимеров, вообще у всего, что можно вообразить, то g = γ M/r2.
Иначе говоря, ускорение земного тяготения одинаково для всех тел.
Первым это установил еще Галилей. И равенство инертной и тяжелой масс, как мы уже говорили, было твердо установлено десятками опытов.
После появления специальной теории, когда стало ясно, что всякая энергия обладает инертной массой, были специально поставлены опыты с радиоактивными веществами.
Оказалось, что равенство инертной и тяжелой масс выполняется и для них. То есть энергия обладает и тяжелой массой, точно такой же, как инертная. Короче, тождественное равенство инертной и тяжелой масс было точно установлено опытами. Но одно дело знать, а другое понимать. Ответить: почему они равны? — и хотел Эйнштейн.
Вероятно, пока что не очень ясно, какое отношение все это может иметь к геометрии.
Тем не менее единственный этот экспериментальный факт плюс специальная теория относительности, плюс еще одно требование чисто теоретического характера привели Эйнштейна к полному изменению наших представлений о геометрии вселенной — к общей теории.
Мы глухо упомянули о каком-то еще одном требовании. Можно даже сформулировать его. Это как говорят: «требование общей ковариантности законов природы», или, по-другому — «требование физической эквивалентности всех систем отсчета».
Но я отчетливо сознаю, что эти слова ровно ничего не прояснили, и привожу их лишь для некоего успокоения собственной совести.
Проследить сколько-нибудь серьезно, как создавалась общая теория относительности, — задача, непосильная для нас сейчас просто из-за недостатка времени. Создавать же видимость объяснения (это, кстати, всегда сделать легко) довольно недостойно. Я прошу только поверить на слово, что «эквивалентность систем отсчета» — требование, продиктованное в значительной степени эстетикой. Внутренняя логика, красота физической теории вообще были для Эйнштейна одним из самых серьезных доводов в ее пользу.
Возможно, он порой даже переоценивал удельный вес подобных доводов. Но он полагал, что законы вселенной в принципе должны быть очень естественны и логичны, а теоретики часто уродливо искажают их, воспринимая то, что есть на самом деле, как бы в кривом зеркале. Можно, конечно, критиковать его образ мыслей. Вообще нет таких вещей, у которых нельзя было бы найти слабых мест; но то, что для него подобный стиль мышления был хорош, доказывают его результаты. Итак:
«Теория гравитационных полей, построенная на основе теории относительности, носит название общей теории относительности. Она была создана Эйнштейном (и окончательно сформулирована им в 1916 году) и является, пожалуй, самой красивой из существующих физических теорий. Замечательно, что она была построена Эйнштейном чисто дедуктивным путем и лишь в дальнейшем была подтверждена астрономическими наблюдениями». Эта фраза взята из лучшего в современной мировой литературе капитального курса теоретической физики Л. Д. Ландау и Е. М. Лифшица — и это единственное место из всех шести томов, где авторы открыто проявляют эмоции.
Мне кажется, этот факт достаточно красноречив, но при желании можно найти много аналогичных.
Пора вернуться к апокрифам.
На вопрос девятилетнего сына: «Папа, почему, собственно, ты так знаменит?» — Эйнштейн вполне серьезно объяснил: «Видишь ли, когда слепой жук ползет по поверхности шара, он не замечает, что пройденный им путь изогнут. Я же, напротив, имел счастье это заметить».
Эту фразу часто цитируют. Не следует, естественно, полагать, что она исчерпывает содержание общей теории.
Но, очевидно, сам Эйнштейн считал, что основной результат его работы — коренное изменение наших представлений о геометрии вселенной.
Уже говорилось, что после появления специальной теории погибло представление о независимости геометрических свойств пространства от времени.
Время вошло в геометрию.
Но свойства времени влияли лишь на геометрию движущихся тел.
Для тел, находящихся в покое, оставалась справедливой геометрия Евклида.
В общей теории относительности появился новый физический фактор, определяющий геометрию.
Старый результат — перепутывание и взаимная зависимость свойств пространства и времени, естественно, сохранился. Но этого мало. Оказалось, что геометрические свойства мира в данной точке в данный момент времени определяются гравитационным полем в этой точке.
Очевидно, предыдущая фраза мало что прояснила. Попробуем поэтому сначала сказать несколько более строгих слов, а потом привести предельно грубую, но проясняющую нечто аналогию.
В общей теории относительности мир описывается геометрией Римана.
При этом, когда говорится о «мире» и о его «геометрии», все время подразумевается четырехмерный мир. Время неразрывно запутано с геометрическими свойствами пространства.
Как помните, у Гаусса и Римана определяющей характеристикой была кривизна пространства в данной точке.
А также другая «внутренняя характеристика пространства» — свойства кратчайших (геодезических) линий.
Эти линии физически определяются траекторией, по которой будет двигаться материальная точка, свободная от действия сил.