В погоне за красотой — страница 5 из 45

Можно полагать, что Евклид был последователь Платона и Аристотеля. А Платон, как помните, требовал строго дедуктивного построения математики.

В фундаменте — аксиомы: основные положения, принимаемые без доказательства, а далее все должно быть безупречно логично выведено из этих аксиом.

Этот идеал и пытается осуществить Евклид. Пытается, потому что с современных позиций буквально вся его аксиоматика неудовлетворительна.

Но это легко заявлять сейчас, после 25-столетних исследований. А в свое время логика Евклида оставляла совершенно подавляющее впечатление.

Попытки рассказать геометрию на базе аксиоматического метода были до Евклида. И не плохие. Но уверенно можно заключить, что работа Евклида была наиболее удачной. Свидетельство — необычная популярность его книги уже в древнем мире; популярность, благодаря которой она дошла и до нас.

Можно говорить всякие обидные (и справедливые) слова в адрес аксиоматики Евклида. Но то, что сама схема стала с тех пор канонической для построения любого раздела математики, забывать не стоит. И конечно, необходимо помнить, что «Начала» блестяще написаны, написаны мастером своего дела, тонким ученым и великолепным педагогом. Поэтому поголовное поклонение математиков Евклиду и его «Началам» и понятно и оправданно. Добавим еще, что эта книга обратила в «математическую веру» несколько десятков молодых людей, ставших впоследствии крупнейшими математиками мира.

Влияние Евклида было поразительно во все века, во всех краях света. Вот, например, в каких супер-восхищенных тонах говорил об Евклиде один из виднейших математиков эпохи Возрождения, Кардан. Сам-то Кардан, кстати, был отчаянный авантюрист, чтобы не сказать проходимец, но математического таланта и культуры у него не отнимешь. Он пишет о «Началах»:

«Неоспоримая крепость их догматов и их совершенство настолько абсолютны, что никакое другое сочинение, по справедливости, нельзя с ними сравнить. Вследствие этого в них отражается такой свет истины, что, по-видимому, только тот способен отличать в сложных вопросах геометрии истинное от ложного, кто усвоил Евклида».

А вот слова одного крупного английского геометра. Это уже середина XIX века.

«Никогда не было системы геометрии, которая в существенных чертах отличалась бы от плана Евклида; и до тех пор, пока я не увижу этого собственными глазами, я не поверю, что такая система может существовать».

Надо, правда, сказать, что в середине XIX столетия автор мог бы мыслить более прогрессивно, и слова эти, помимо преклонения перед Евклидом, демонстрируют его собственную изрядную консервативность.

Можно приводить сколько угодно подобных цитат, но мы ограничимся эффектной концовкой. Может быть, самое яркое свидетельство влияния «Начал» буквально на все области мышления то, что один из известных в истории западного мира философов, Бенедикт Спиноза, весь план своего основного сочинения «Этика» целиком заимствовал у Евклида.

Возможно, авторитет Спинозы не слишком убеждает читателей, и поэтому для истинного финала своего воспевания «Начал» я приберег Исаака Ньютона.

Его основополагающая работа «Начала натуральной философии» копирует Евклида не только по заглавию, но и по схеме. В основе — аксиомы, из которых следует все. Сходство и в том, что аксиоматика Ньютона оказалась столь же эфемерна, как и Евклида.

И последняя справка. К 1880 году насчитывалось 460 изданий «Начал».

Вероятно, прежде чем идти дальше, необходимо несколько слов сказать о самом аксиоматическом методе.

Совершенно ясное и строгое понимание дедуктивных схем пришло лишь в начале XX столетия. В основном это заслуга великого немецкого математика Гильберта.

В несколько огрубленной и упрощенной форме дело обстоит примерно так. Мы ограничимся дальше конкретным случаем геометрии, чтобы не слишком увлекаться абстракциями.


Этап № 1. Перечисление Основных Понятий.


Фундамент — Основные Понятия (либо Основные Элементы). Они — результат длительного экспериментального изучения природы, сложного, путаного, туманного и т. д. и т. д. пути.

В итоге, как некое абстрактное отражение реальности, возникают Основные Понятия. О них в аксиоматике не говорится ничего. Они как бы даны свыше.

Это естественно. Определять Основные Понятия можно лишь при помощи других новых понятий, те, в свою очередь, при помощи… и так далее до бесконечности. Надо же с чего-то начинать. Как говорят французы: «Чтобы сварить рагу из кролика, необходимо поймать хотя бы кошку».



Итак, Основные Понятия. Математики говорят прелестно: это элементарные объекты, которые не определяются, а лишь называются. Впрочем, маленькое добавление есть. В современной аксиоматике геометрии Основные Понятия делятся на две группы:

а) Основные Образы;

б) Основные Соотношения.

Вообще говоря, сейчас есть по меньшей мере две существенно различные аксиоматические схемы. Дальше мы будем пользоваться той, в которой Основные Образы таковы:

1) точка; 2) прямая; 3) плоскость.

Теперь посмотрим, что представляют собой Основные Соотношения. Они формулируются так:

1) принадлежать; 2) лежать между; 3) движение.

Основные Понятия установлены. Теперь можно перейти ко второму этапу.


Этап № 2. Основные Аксиомы.


Для наших Основных Понятий мы высказываем целый набор утверждений, которые принимаем без каких-либо доказательств. Это аксиомы. Формально говоря, только аксиомы наполняют наши Основные Понятия живым содержанием. Только они дают им жизнь. Без аксиом Основные Понятия вообще лишены какого-либо содержания. Они — пустой звук. Аморфные призраки. Аксиомы определяют правила игры для этих «призраков». Устанавливают четкий логический порядок. И лишь одно может сказать математик о своих Основных Понятиях — они подчиняются таким-то и таким-то аксиомам. И все. Все!

Потому что математик, собственно, не знает, о чем он говорит. Единственное, что он требует: выполнения своих аксиом.

Единственное!

Когда аксиоматический метод доведен до совершенства, геометрия, говоря формально, превращается в абстрактную логическую игру.

«Точка», «прямая», «плоскость», «движение» — под этим может скрываться все что угодно. Любые объекты.

Мы построим для них геометрию. И мы будем называть нашу геометрию геометрией Евклида, если будут выполняться аксиомы, установленные для «настоящей» геометрии Евклида.

Например: через две различные точки проходит одна, и только одна, прямая. Это аксиома, сформулированная на обычном языке.

Если строго придерживаться терминологии, введенной чуть ранее, надо было бы сказать так:

двум различным точкам может принадлежать одна, и только одна, прямая.

И далее в том же духе. Как хорошее упражнение рекомендую на основе этой аксиомы доказать теорему: «Две прямые имеют лишь одну общую точку».

Всего в евклидовой геометрии сейчас различают пять групп аксиом. Это:

1) аксиомы соединения;

2) аксиомы порядка;

3) аксиомы движения;

4) аксиома непрерывности;

5) аксиома о параллельных.

Вряд ли стоит сейчас перечислять все эти аксиомы, мы поместим их в приложении, памятуя слова Геродота, что ничто не придает книге такой вес и солидность, как приложения.

К аксиомам мы еще не раз вернемся, а пока укажем…


Этап № 3. Перечисление Основных Определений.


При помощи Основных Понятий мы строим более сложные. Например: угол — это фигура, образованная двумя полупрямыми (лучами), исходящими из одной точки.

Если внимательно прочитать эту фразу, станет ясно, что в определении угла использовано одно сложное понятие, а именно: «луч» — полупрямая.

Очевидно, мы должны были раньше дать определение этого понятия при помощи Основных. Это довольно легко можно сделать. Читатели могут проверить, насколько они прониклись духом дедукции, и, вооружившись списком аксиом, попытаться решить эту задачу.

Если бы оказалось, что, используя Основные Понятия, невозможно определить, что такое луч, тогда пришлось бы это понятие отнести к Основным.

В общем все остальные понятия и определения вводятся при помощи Основных, а также (внимание!) тех аксиом, которые установлены нами для Основных Понятий.

Нам остался последний…


Этап № 4. Формулировка теорем. Доказательство теорем.


Для наших понятий (Основных и неосновных) мы высказываем утверждения-теоремы, которые и доказываем.

Это, собственно, и есть предмет геометрии.

Я сейчас еще раз хотел бы повторить, что в такой постановке геометрия превращается в совершенно абстрактную игру наподобие шашек либо, еще лучше, шахмат.

Там также есть Основные Понятия — фигуры. Есть аксиомы — совокупность правил игры. И наконец, есть теоремы. Собственно, одна теорема: как поставить противнику мат.

Для решения этой «теоремы» игрок в ходе партии доказывает десятки лемм (вспомогательных теорем), выбирая всякий раз лучший, по его мнению, ход в данной позиции.

Впрочем, отличие игр от геометрии есть. Оно состоит в том, что очень часто партнерами принимаются неправильные «доказательства». В шахматах, скажем, не сформулированы (неизвестны) строгие логические критерии оценки каждого хода или позиции. В геометрии они есть. В ней всегда можно установить, что вновь сформулированная теорема противоречит предыдущим теоремам, а значит, противоречит и более ранним, а значит… Разматывая клубок до конца, мы приходим к двум возможностям. Или мы допустили ошибку в нашем рассуждении, или теорема, которую мы вновь сформулировали, ошибочна.

Первая возможность малоинтересна для науки; она показывает лишь то, что мы плохо владеем математикой.

Зато во второй содержится определенный и часто очень важный результат. Если мы убедились, что наша гипотеза (теорема) неверна, следовательно, верны другие теоремы, именно те, что противоречат нашей. Если таких противоречащих теорем лишь одна, то нашим рассуждением мы ее доказали.