Все эти множества конечны и потому во многих случаях могут быть заданы своими перечнями. Например, учитель, изучая успеваемость в каком-нибудь классе средней школы, задает множество учеников этого класса их списком в классном журнале, библиотекарь задает списком (каталогом) множество книг в библиотеке, географ задает списком множество государств на земном шаре.
По мере развития физики элементарных частиц оказывается все более сложным делом описывать эти частицы на языке теории множеств, поскольку они все время превращаются друг в друга, причем из протона может получиться нейтрон, а из нейтрона — снова протон, так что слова "состоит из" утрачивают свой наглядный смысл.
При составлении множеств из объектов реального мира приходится обычно отождествлять те или иные предметы или понятия. Например, говоря о множестве слов русского языка, составитель словаря пренебрегает тем, что эти слова по-разному произносятся в разных областях страны. Для него эти варианты произношения несущественны и задают один и тот же элемент множества русских слов. По-иному подходят к тому же множеству диалектологи, для которых наиболее интересны именно различные варианты произношения.
Таким образом, говоря об элементах того или иного множества (как состоящего из реальных объектов, так и составленного из абстрактных понятий), мы осуществляем некоторую операцию отождествления, интуитивно чувствуя, что в данном случае она не приведет к противоречию. Иными словами, множества возникают из более расплывчатых понятий путем отождествления тех или иных элементов.
Другие осложнения при использовании теоретико-множественных понятий для изучения реального мира возникают из-за расплывчатости, нечеткости многих понятий, недостаточной определенности многих свойств предметов, трудности расчленения действительности на отдельные объекты. О некоторых из этих осложнений будет рассказано далее.
Разумеется, все указанные осложнения не могут послужить причиной для отказа от использования теоретико-множественного языка при описании действительности, при построении научных теорий. Они указывают лишь на то, что теоретико-множественная трактовка той или иной области наук налагает серьезные ограничения на наш подход к изучаемым явлениям, приводит во многих случаях к определенному "огрублению" этих явлений.
В то же время, как указывает Ю. И. Манин[41], понятия теории множеств весьма полезны при построении математических моделей явлений реального мира, так как они дают универсальную базу для определения всех математических конструкций на основе "обобщенно геометрических образов". Он пишет, что эти образы представляют собой вместилище смысла математических формализмов и в то же время средство для отбора содержательных утверждений из всего необозримого моря выводимых математических формул. Поэтому такие образы выступают в роли естественного посредника между математикой и физикой. По его мнению, теоретико-множественный язык хорош тем, что он не вынуждает говорить ничего лишнего.
Множества и язык.
Мы уже отмечали, что задание множеств реальных объектов с помощью их характеристических свойств наталкивается на затруднения. Эти затруднения связаны как с большим числом промежуточных форм, так и с недостаточной четкостью обыденного языка. Казалось бы, например, что множество русских слов однозначно определено и всем ясно, что ему принадлежат слова воин, конь, стоять и не принадежат слова table, legen, απειρον. Однако, раскрыв семнадцатитомный словарь русского языка, многие читатели встретят там незнакомые слова, принадлежность которых этому множеству им не была ранее известна. Кроме того, на протяжении веков в русском языке появлялись новые слова, иногда заимствованные из других языков, например хозяин или амбар — из тюркских языков, зонтик — из голландского, периферия — из греческого, другие же слова отмирали и исчезали.
Никто теперь не скажет кмети вместо воины, забыто и не применяется слово смерды, долгие споры ведут ученые о том, что значило слово харалужный. И всегда существовали слова, относительно которых не было уверенности, вошли ли они уже в словарный состав русского языка или, наоборот, сохранились ли они еще в нем. Например, в начале XIX в. адмирал А. С. Шишков отвергал такие слова, как галоши и , предлагая заменить их на мокроступы и окоем, а в середине того же века много спорили о том, следует ли сохранять в литературной речи слова сей и оный или они уже устарели. Как пишет в своих воспоминаниях писатель Юрий Трифонов, тонкий знаток русской речи К. А. Федин употреблял слова заочный и заочник, лишь взяв их в кавычки, поскольку считал, что они чересчур новомодны.
По указанным причинам многие ученые предпочитают не считать совокупность русских слов множеством. В то же время русские слова, содержащиеся в том же семнадцатитомном словаре, несомненно, образуют множество — о каждом слове можно наверняка сказать, встречается оно в этом словаре или нет.
Не является вполне определенным термин множество планет Солнечной системы. Не говоря уже о том, что мы не знаем сейчас, существуют ли планеты за Плутоном, надо иметь в виду, что кроме больших планет — Меркурия, Венеры, Земли, Марса, Юпитера, Сатурна, Урана, Нептуна и Плутона — вокруг Солнца обращается около 1600 малых планет, так называемых астероидов. Поперечники некоторых из них, например Цереры, Паллады, Юноны, измеряются сотнями километров, но есть и астероиды, поперечники которых не превышают 1 км. По мере улучшения методов наблюдения астрономы будут открывать небесные тела все меньших размеров, и наконец возникнет вопрос, где же кончаются планеты и начинаются метеориты и космическая пыль.
Впрочем, разница между планетами и метеоритами интересует в основном астрономов и не столь уже важна. Но для юриста разница между грабежом, кражей со взломом, похищением и другими видами преступлений является существенно важной — от той или иной квалификации преступления зависит приговор суда. Поэтому при формулировке законов и постановлений всегда стремятся к четким и недвусмысленным определениям для всех встречающихся в них понятий. Например, определяя, кто имеет право бесплатного проезда по железным дорогам СССР, пишут не "маленькие дети", а "дети до пяти лет". Тем самым четко определено, кто из детей имеет это право, а кто нет. Единственным исключением является случай, когда малолетнему пассажиру доведетcя праздновать день рождения в пути[42] но это настолько маловероятно, что правила об этом ничего не говорят. Правда, рассказывают, что один пунктуальный отец включил стоп-кран в момент, когда его сыну исполнилось пять лет, чтобы точно определить оставшийся отрезок пути, за который следовало уплатить.
Нечеткие множества.
Оригинальный выход из описанных выше затруднений предложил американский ученый Л. Заде[43]: он ввел понятие нечеткого (или иначе размытого) множества и тесно связанное с ним понятие лингвистической переменной. Подобно тому как четким свойствам (быть простым числом, быть треугольником) соответствуют обычные или, иначе, четкие множества (множество простых чисел, множество треугольников), нечетким свойствам (например, быть молодым человеком, быть длинной улицей) соответствуют нечеткие множества (молодых людей, длинных улиц). Ведь, например, почтенный академик назовет молодым и сорокалетнего коллегу, а студенту-первокурснику профессор такого возраста кажется пожилым. Каждому человеку (или, точнее, каждому эксперту) соответствует четкое множество людей, которых он считает молодыми. Но тогда каждому человеку x соответствует число m/n, где n — общее число экспертов, а m — число экспертов, считающих, что x молод. Обозначим m/n через p (x) и скажем, что x входит в нечеткое множество молодых людей с коэффициентом принадлежности p(x), который, конечно, принимает значения от 0 до 1.
Четкие множества отличаются от нечетких тем, что для них p(x) может принимать лишь два значения: 0 и 1, причем p(x) = 1, если x∈A, и p(x) = 0, если x∉A. Наличие экспертов позволяет из совокупности четких множеств составить нечеткое множество. Конечно, при всей нечеткости полученного множества можно с уверенностью сказать, что для некоторых x имеем p(x) = 1 (например, никто не усомнится в молодости новорожденного ребенка), а для некоторых x имеем p(x) = 0 (например, вряд ли кто-нибудь назовет молодым восьмидесятилетнего старца). Впрочем, рассказывают, что когда гроссмейстеру Тартаковеру было 65 лет, он победил 70-летнего гроссмейстера Бернштейна и воскликнул: "Молодость побеждает!".
Разумеется, созывать каждый раз консилиум экспертов для определения "коэффициентов принадлежности" вряд ли целесообразно. Чаще коэффициенты вводят иным путем, например на основе статистических данных. Но после того, как они выбраны, с их помощью можно получить коэффициенты принадлежности и для других множеств.
На основе понятия нечеткого множества были введены нечеткие отношения и нечеткие алгоритмы. С нечеткими алгоритмами люди имели дело задолго до того, как их определил Л. Заде. В любой поваренной книге найдутся алгоритмы, содержащие советы вида: "Сливки сперва особо взбить, чтобы были весьма густы, потом всыпать в них муку и еще все вместе венчиком хорошенько взбить...". И хотя авторы этих книг не определяли точно, когда сливки надо считать весьма густыми и какое взбивание венчиком надо считать достаточным, надо думать, что блюда по этим рецептам получались совсем неплохими. Любопытно, что теперь нечеткие алгоритмы начали встречаться и в таких разделах науки, как вычислительная математика. Однако только будущее покажет, был ли удачен предложенный Заде метод введения нечетких множеств и какая из него получится польза.