В поисках бесконечности — страница 16 из 32

Сначала напишем нуль и поставим после него запятую. Потом возьмем число, получившее первый номер, и посмотрим на его первый десятичный знак после запятой (то есть на число десятых). Если эта цифра отлична от 1, то в числе, которое мы пишем, поставим после запятой 1, а если эта цифра равна 1, то поставим после запятой 2. Затем перейдем к числу, получившему второй номер, и посмотрим на его вторую цифру после запятой. Снова если эта цифра отлична от единицы, то в числе, которое мы пишем, поставим на месте сотых цифру 1, если же эта цифра является единицей, то поставим цифру 2. Точно так же будем действовать и дальше, каждый раз обращая внимание лишь на n-ю цифру числа, получившего n-й номер. В результате мы выпишем некоторое число, например

N = 0,1121211...

Ясно, что это число не получило никакого номера: в первом десятичном знаке оно отличается от числа с номером 1, во втором — от числа с номером 2, ..., в n-м — от числа с номером n и т. д.

Чтобы читателю стало яснее, как выписывается число, не получившее номера, предположим, что при выбранной нумерации первые пять чисел имеют следующий вид:

Тогда число, не получившее номера, будет начинаться со следующих десятичных знаков:

0,12121 ...

Разумеется, не только это, но и многие другие числа не получили номеров (мы могли бы заменять все цифры, кроме 2, на 2, а цифру 2 на 7 или выбрать еще какое-нибудь правило). Но нам достаточно существования одного-единственного числа, не получившего номера, чтобы опровергнуть гипотезу о возможности нумерации всех действительных чисел.

Существование трансцендентных чисел.

Мы говорили, что алгебраическими числами называют числа, являющиеся корнями уравнений

a0xn + a1xn-1 + ... + an = 0

с целыми коэффициентами. Числа же, не являющиеся корнями таких уравнений, называют трансцендентными.

В течение долгого времени математики имели дело лишь с алгебраическими числами, такими, как и т. д. Лишь ценой больших усилий французскому математику Лиувиллю[49] удалось найти в 1844 г. несколько трансцендентных чисел. А доказательство трансцендентности числа π, проведенное Линдеманом[50] в 1882 г. было большим научным событием: ведь из него следовала невозможность квадратуры круга.

И вдруг оказалось, что алгебраические числа, которые встречаются на каждом шагу, на самом деле являются величайшей редкостью, а трансцендентные числа, которые так трудно строить,- обычным правилом. В самом деле, мы уже видели, что алгебраические числа образуют лишь счетное множество. Множество же всех действительных чисел, как мы только что обнаружили, несчетное. Значит, несчетна и разность множества действительных чисел и множества алгебраических чисел, а это и значит, что множество трансцендентных чисел несчетно.

Это доказательство существования трансцендентных чисел, полученное Кантором в 1873 г., отличалось от доказательства Лиувилля тем, что опиралось лишь на общие соображения о счетности и несчетности множеств, а не на специальные свойства алгебраических чисел. Из теорем Лиувилля вытекает, например, что число 0,1010010000001..., в десятичной записи которого после n-й единицы стоит n! нулей, трансцендентно. А для того чтобы получить пример трансцендентного числа исходя из доказательства Кантора, придется пройти гораздо более длинный путь: сначала занумеровать все алгебраические числа, потом записать их в виде десятичных дробей и, наконец, строить диагональным процессом искомое число. Вряд ли за обозримый промежуток времени удастся ответить, чему равен, например, десятичный знак этого числа с номером 10100. А метод Лиувилля позволяет строить трансцендентные числа, для которых, хотя и с трудом, ответить на такие вопросы можно. Таким образом, общность метода доказательства оборачивается его слабостью при переходе к конкретным вопросам.

Рис. 8


На длинном и коротком отрезках поровну точек.

До тех пор пока читатель не познакомился с удивительными свойствами бесконечных множеств, ответ на вопрос: "Где больше точек, на отрезке длиной в 1 мм или на отрезке длиной в 1 м?" — вряд ли вызвал бы у него хоть тень сомнения. Ясно, что на отрезке в 1 м куда больше точек, он ведь в 1000 раз длиннее. Но теперь, вероятно, читатель поостережется делать столь безапелляционные заявления — уж слишком непохожи свойства бесконечных множеств на то, чему учит обыденная жизнь. И действительно, на очень коротком и очень длинном отрезках точек поровну! Иными словами, всегда можно установить взаимно однозначное соответствие между точками этих отрезков. Как это сделать, лучше всего видно из рис. 8. Центральная проекция из точки O ставит в соответствие точке A точку C, точке B — точку Д и т. д. В результате каждой точке отрезка АВ соответствует одна и только одна точка отрезка CD.

Трудно примириться с мыслью, что дорога длиной в миллион световых лет имеет столько же точек, сколько и радиус атомного ядра!

Но еще неожиданнее оказалось то, что даже на всей бесконечной прямой не больше точек, чем на отрезке, то есть что между множеством точек на прямой и множеством точек на отрезке можно установить взаимно однозначное соответствие.

Рис. 9


Мы возьмем даже не весь отрезок, а выбросим из него концы (как говорят, возьмем не отрезок, а промежуток). Как установить взаимно однозначное соответствие между промежутком и прямой, видно из рис. 9. Сначала точки промежутка отображают на полуокружность, а потом проектируют полуокружность на прямую. Ясно, что при этом каждой точке промежутка соответствует одна и только одна точка прямой, причем ни одна точка на прямой не пропущена.

Впрочем, это соответствие можно установить и по другому, с помощью кривой — тангенсоиды, графика функции y = tg x (рис. 10).

Рис. 10


Отрезок и квадрат.

С тем, что на бесконечной прямой столько же точек, сколько и на отрезке, математики, скрепя сердце, примирились. Но следующий результат Кантора оказался еще более неожиданным. В поисках множества, имеющего больше элементов, чем отрезок, он обратился к множеству точек квадрата. Сомнения в результате не было: ведь отрезок целиком размещается на одной стороне квадрата, а множество всех отрезков, на которые можно разложить квадрат, само имеет ту же мощность, что и множество точек отрезка.

На протяжении трех лет (с 1871 по 1874 г.) Кантор искал доказательство того, что взаимно однозначное соответствие между точками отрезка и точками квадрата невозможно.

Шли годы, а желанный результат не получался. И вдруг совершенно неожиданно ему удалось построить соответствие, которое он считал невозможным! Сначала он сам не поверил себе. Своему другу и единомышленнику Дедекинду он писал: "Я вижу это, но не верю".

Но все же пришлось смириться с тем, что интуиция подвела и здесь — в квадрате оказалось ровно столько же точек, сколько и на отрезке. Строгое доказательство этого утверждения несколько осложняется из-за неоднозначности десятичной записи чисел. Поэтому мы дадим лишь эскиз доказательства Кантора.

Рис. 11


Возьмем отрезок [0, 1] и квадрат со стороной 1. Этот квадрат можно считать расположенным так, как на рис. 11. Нам надо установить взаимно однозначное соответствие между точками отрезка и квадрата. Проектирование точек квадрата на отрезок АВ здесь не помогает, ведь при проектировании в одну точку отрезка перейдет бесконечное множество точек квадрата (например, в точку А — все точки отрезка DA).

Решение получается следующим образом. Каждую точку T квадрата ABCD можно задать двумя числами — ее координатами x и y (или попросту ее расстояниями до сторон АВ и AD). Эти числа можно записать как бесконечные десятичные дроби. Так как x и y не больше 1, то эти дроби имеют вид

x = 0, α1α2... ,αn...,(1)

y = 0, β1β2... βn...(2)

(для простоты мы не берем точки квадрата, лежащие на его сторонах, а берем лишь внутренние точки). Здесь αn и βn — десятичные знаки чисел x и y, например, если x = 0,63205... и y = 0,21357..., то α1 = 6, α2 = 3, α3 = 2 и т. д., а β1 = 2, β2 = 1, β3 = 3 и т. д.

Нам надо теперь найти точку Q отрезка АВ, соответствующего точке Т. Достаточно указать длину отрезка AQ. Мы выберем эту длину равной числу z, десятичные знаки которого получаются путем "перетасовывания" десятичных знаков чисел хну. Иными словами, сделаем из двух записей (1) и (2) третью, написав их десятичные знаки через один:

z = 0, α1β1α2β2α3β3 ... αnβn ...

Например, если

x = 0,515623...

и

y = 0,734856...,

то

z = 0,571354682536...

Точка z лежит на отрезке [0, 1], и ясно, что различным точкам квадрата соответствуют при этом разные точки отрезка. Ведь если точки T и T' не совпадают, то в десятичных записях чисел x и x' или y и y' хоть один знак будет разный. Но это приведет к тому, что десятичные записи соответствующих чисел z и z' не совпадут. Несколько более подробный анализ показывает, что тогда не совпадают и сами эти точки.

Всех точек отрезка мы не получим. Например, точка z = 0,191919... должна была бы получиться из пары x = 0,111..., y = 0,999..., соответствующей точке на стороне квадрата, а такие точки мы условились не брать. Поэтому при отображении квадрата на отрезок точка z не будет образом ни одной точки квадрата.