В поисках бесконечности — страница 23 из 32

кривая — это кривая, которая при t = 1 попадает в ту же точку, где она была при t = 0. Если при этом различным моментам времени t1 и t2, лежащим между 0 и 1, соответствуют разные точки кривой, то эта кривая не пересекает саму себя.

Жордан доказал следующую теорему.

Замкнутая жорданова кривая Г, не имеющая точек самопересечения, разбивает всю плоскость на две части. Две точки, принадлежащие одной и той же части, можно соединить ломаной, не пересекающей кривую Г, а точки из разных частей нельзя соединить такой ломаной, любая соединяющая их ломаная пересекает кривую Г (рис. 21).

Рис. 21


Эта теорема кажется совершенно очевидной. Однако ее доказательство потребовало очень тонких рассуждений. Даже в случае, когда линия Г является замкнутым многоугольником, доказательство остается очень сложным.

Две части, на которые замкнутая жорданова линия разбивает плоскость, называют внутренней и внешней областями, ограниченными этой линией. Таким образом, понятие области, ограниченной замкнутой линией, приобрело точный смысл.

Кривая проходит через все точки квадрата.

Когда Жордан дал свое определение кривой, то сначала казалось, что цель достигнута, получено строгое определение понятия линии, не опирающееся на наглядность. Но вскоре оказалось, что это не так. Определение Жордана охватывало не только привычные для математиков линии, но и фигуры, которые никто бы линиями не назвал. Уж со всюду колючими линиями математики как-нибудь примирились бы. Но назвать линией квадрат, на это ни у кого не хватило бы духу. А оказалось, что и квадрат, и треугольник (не периметр треугольника, а сам треугольник со всеми его внутренними точками), и круг являются линиями в смысле Жордана. Доказал это итальянский математик Пеано[74].

Мы уже рассказывали, что Кантор установил взаимно однозначное соответствие между точками отрезка и квадрата, то есть показал, что отрезок содержит ровно столько же точек, что и квадрат. Построенное им соответствие не было непрерывным. Когда точка двигалась по отрезку, соответствующая ей точка на квадрате не ползла подобно жуку, а прыгала как блоха. В самом деле, возьмем на отрезке точки

0,50000000... и 0,499999990000000...

Эти точки довольно близки друг к другу. Но соответствующие им точки на квадрате далеки друг от друга. Ведь первой из них соответствует точка (0,50000... , 0,0000...), лежащая на нижней стороне квадрата, а второй — точка (0,4999000... , 0,9999000...), лежащая у самой верхней стороны квадрата. И если мы будем увеличивать число девяток у второй точки, приближая ее к первой, то соответствующие точки квадрата и не подумают приближаться друг к другу.

Таким образом, канторово отображение отрезка на квадрат хотя и было взаимно однозначным, но не было непрерывным. Оно не давало, таким образом, жордановой кривой. Пеано удалось построить другое отображение множества точек отрезка на множество точек квадрата, при котором близким точкам на отрезке соответствовали близкие точки квадрата. Иными словами, Пеано удалось построить кривую линию (в смысле Жордана), которая прошла через все точки квадрата!

Разумеется, мы не можем нарисовать кривую Пеано, разве что, подражая художнику-абстракционисту, нарисуем черный квадрат. Но ведь на этом квадрате все равно нельзя будет понять, где начинается кривая, где она кончается, как она обходит квадрат. Поэтому последуем примеру не художника-абстракциониста, а физика Перрена и будем приближенно изображать путь точки в виде ломаной. Чем меньше будут промежутки времени между отдельными "наблюдениями", тем точнее получившаяся ломаная изобразит кривую Пеано.

Сначала будем отмечать положение движущейся точки через каждые 1/4с. Иными словами, отметим ее положение в начале движения, через 1/4с после начала движения, через 1/2с после начала движения, через 3/4с и в конце движения. Мы получим 5 точек. Соединив их, получаем линию ABCDE, изображенную на рис. 22, а.

Рис. 22


Разумеется, эта линия не проходит через все точки квадрата. Но мы уменьшим промежутки времени между отдельными наблюдениями и будем отмечать положение точки каждые 1/16с. Линия станет более извилистой, увеличится число изломов, и она примет вид, изображенный на рис. 22, б. Если еще чаще отмечать положение движущейся точки, то получим линию, изображенную на рис. 22, в. Мы видим, что линия все плотнее и плотнее заполняет квадрат, все ближе и ближе подходит к каждой его точке. В пределе, если все время наблюдать за движущейся точкой, мы получим линию, проходящую через все без исключения точки квадрата.

Надо отметить, что, выиграв по сравнению с Кантором в том, что его линия оказалась непрерывной, Пеано потерял в другом. Его линия уже не задавала взаимно однозначного отображения отрезка на квадрат. Через некоторые точки квадрата она проходила по нескольку раз. Позже было доказано, что невозможно сохранить одновременно и непрерывность, и взаимную однозначность соответствия: не существует жордановой кривой, проходящей через все точки квадрата в точности по одному разу!

Все лежало в развалинах.

Трудно передать словами впечатление, произведенное на математический мир результатом Пеано. Казалось, что все рухнуло, что самые основные математические определения потеряли всякий смысл, не было видно различия между линией и поверхностью, поверхностью и телом (результат о невозможности взаимно однозначного и непрерывного соответствия между отрезком и квадратом еще не был известен). Пуанкаре с горечью воскликнул: "Как могла интуиция до такой степени обмануть нас!"

Стало ясно, что жорданово определение кривой не безупречно. С одной стороны, оно слишком широко: под него подходит и кривая Пеано. А с другой стороны, оно слишком узко — даже окружность с намотанной на нее спиралью уже не является жордановой кривой.

Итак, снова встал вопрос: что же такое линия и чем она отличается от поверхности? Ответ на него был связан с общими исследованиями Кантора о геометрических фигурах.

Как делают статуи.

Создав теорию множеств, Кантор перешел к вопросу о том, что такое геометрическая фигура? Самый общий ответ на этот вопрос гласил: геометрическая фигура — это любое множество точек пространства. Если это множество лежит на плоскости, то получается плоская геометрическая фигура. Но такой ответ был бы слишком общим — у "фигур" в этом смысле нет почти никаких достаточно интересных свойств.

Поэтому надо было в первую очередь ограничить совокупности изучаемых множеств, выделить из них те, которые ближе всего по своим свойствам к обычным геометрическим фигурам.

Чтобы выделить такой класс фигур, выясним, что общего имеют друг с другом обычные фигуры, такие, как квадрат, круг, отрезок прямой, астроида и т. д. Оказывается, все эти фигуры можно получить единообразным процессом.

Про многих знаменитых скульпторов рассказывают, что на вопрос, как удается делать столь замечательные статуи, следовал ответ: "Я беру глыбу мрамора и отсекаю от нее все лишнее". В разных книгах это можно прочитать о Микеланджело, о Торвальдсене, о Родене.

Тем же самым способом можно получить любую ограниченную плоскую геометрическую фигуру: надо взять какой-нибудь квадрат, в котором она лежит, а потом отсечь все лишнее. Однако отсекать надо не сразу, а постепенно, на каждом шагу отбрасывая кусочек, имеющий форму круга. При этом сам круг выбрасывается, а его граница — окружность — остается в фигуре.

Рис. 23


На первый взгляд кажется, что так можно получить лишь фигуры такого вида, как на рис. 23. Но все дело в том, что отбрасывают не один и не два круга, а бесконечное, точнее говоря, счетное множество кругов. Таким путем можно получить любую фигуру. Чтобы убедиться в этом, достаточно принять во внимание, что множество кругов, у которых рациональны и радиус и обе координаты центра, счетное (это легко доказывается описанными во второй главе методами). А теперь, чтобы получить любую фигуру, достаточно взять содержащий ее квадрат ("глыбу мрамора") и отбросить все круги указанного выше вида, которые не содержат ни одной точки нужной нам фигуры. Если же выбрасывать круги не из квадрата, а из всей плоскости, то описанным приемом можно получить и неограниченные фигуры.

С помощью описанного выше метода можно получить круги и квадраты, эллипсы и астроиды, любые правильные многоугольники и звезды. Но получить таким путем квадрат с выброшенной вершиной не удастся — при попытке вырезать эту вершину придется удалить и какую-то ее окрестность. В математике фигуры, получаемые из плоскости вырезанием счетного множества кругов (напомним, что при этом граница выбрасываемого круга остается нетронутой), называют замкнутыми.

Континуумы.

Оказывается, что кроме обычных геометрических фигур с помощью выбрасывания счетного множества кругов (квадратов и т. д.) можно получать и другие множества, не слишком похожие на обычные фигуры, но все же обладающие многими интересными свойствами. Например, ковер Серпинского, о котором мы уже говорили, получается именно таким путем: из квадрата со стороной 1 выбрасывают один за другим маленькие квадратики, причем их стороны остаются.

Рис. 24


Однако путем выбрасывания можно получить и "фигуры", не состоящие из одного куска. Например, если удалять "кресты"[75], как на рис. 24, то получится в конце концов множество, не содержащее ни одного целого куска (как говорят, вполне несвязное). Поэтому мы введем ограничение, что после каждого выбрасывания должно оставаться множество, состоящее из одного куска. Тогда и после всех выбрасываний останется множество из одного куска (то есть, как говорят математики, связное). Кроме того, получающееся множество ограничено, то есть целиком лежит в некотором квадрате.