1/2 километра. При этом, конечно, каналы должны стать более узкими, чем ранее. В следующую четверть суток каналы продолжаются дальше так, чтобы каждая точка суши отстояла от любого канала меньше, чем на 1/4 километра, и т. д. С каждым шагом каналы становятся все извилистее и извилистее, все уже и уже. Через двое суток такой работы весь остров будет пронизан этими тремя каналами и превратится в канторову линию. Стоя в любой точке этой линии, можно зачерпнуть, по желанию, соленой, теплой пресной или холодной пресной воды. При этом воды не смешиваются друг с другом, Если бы вместо океана и озер мы взяли три страны, то получили бы ту удивительную картину, о которой говорили вначале,- в каждой точке границы можно поставить трех пограничников — по одному от каждой страны.
"Недиссертабельная" тема.
У канторова определения линии был один недостаток — оно совсем не годилось для пространственных кривых. А уж что такое поверхность в пространстве, определить таким образом было весьма сложно, так как и кривые, и поверхности являются континуумами без внутренних точек. Эту задачу — выяснить, чем отличаются в пространстве кривые от поверхностей,- поставил летом 1921 г. Д. Ф. Егоров перед П. С. Урысоном[96] (как видно, он больше думал о математической значительности проблемы, чем, как теперь иногда говорят, о "диссертабельности" темы — задача-то была одной из труднейших!).
Вскоре Урысон понял, что задача Егорова лишь частный случай гораздо более общей проблемы: что такое размерность геометрической фигуры, то есть сколько измерений она имеет, почему надо говорить, что отрезок или окружность имеют размерность 1, квадрат — размерность 2, а куб или шар — размерность 3? Вот как вспоминает об этом периоде жизни П. С. Урысона его ближайший друг П. С. Александров: "...Все лето 1921 года прошло в напряженных попытках найти "настоящее" определение (размерности), причем П. С. переходил от одного варианта к другому, постоянно строя примеры, показывавшие, почему тот или иной вариант надо отбросить. Это были два месяца действительно всепоглощающих размышлений. Наконец, в одно утро в конце августа II. С. проснулся с готовым, окончательным и всем теперь хорошо известным индуктивным определением размерности... В то же утро во время купания в Клязьме П. С. Урысон рассказал мне свое определение размерности и тут же, во время этого разговора, затянувшегося на несколько часов, набросал план всего построения теории размерности с целым рядом теорем, бывших тогда гипотезами, за которые неизвестно было, как и взяться, и которые затем доказывались одна за другой в течение последующих месяцев. Никогда потом я не был участником или свидетелем математического разговора, который состоял бы из такого сплошного потока новых мыслей, как в то августовское утро. Вся набросанная тогда программа полностью осуществилась в течение зимы 1921/22 года; к весне 1922 года вся теория размерности была готова...". \
Основная идея определения размерности по Урысону заключается в следующем. Чтобы отделить часть линии от всей остальной линии обычно достаточно двух или нескольких точек (на рис. 32 часть четырехлепестковой розы, содержащая центр, отделяется от остальной розы восемью точками). Но часть поверхности уже невозможно отделить от всей поверхности несколькими точками — для этого обязательно потребуется целая линия: сколько бы точек ни взять на поверхности, их всегда можно обойти. Точно так же часть трехмерного пространства отделяется от всего остального пространства поверхностью.
Рис. 32
Все это надо было еще уточнить: на некоторых линиях для отделения части требуется бесконечно много точек, но эти точки не образуют в совокупности никакой линии. Урысону удалось точно сформулировать все нужные определения. В каком-то смысле его определения напоминали определения Евклида (оконечность линии — точки, оконечность поверхности — линии). Но это сходство примерно такое же, как между греческой триерой и современным океанским лайнером.
Уточним эти определения. Назовем границей точечного множества A в объемлющем его точечном множестве X совокупность всех точек на X, сколь угодно близко к которым есть как точки, принадлежащие A, так и точки из X, которые A не принадлежат. Например, для квадрата на плоскости граница совпадает с его обычной границей, а для того же квадрата в пространстве — с ним самим. Множество A называется открытым в X, если оно не содержит ни одной точки своей границы в X. Примером такого множества может служить круг на плоскости, если отбросить граничную окружность.
Множество X имеет размерность нуль, если любая его тонка содержится в сколь угодно малом множестве, граница которого в X пуста. Примерами таких множеств могут служить любое конечное множество точек, точки с рациональными координатами на прямой, канторово множество и т. д.
Далее, множество X имеет размерность один, если оно не является нуль-мерным, но любая его точка может быть заключена в сколь угодно малое открытое в X множество, граница которого в X нуль-мерна.
Оказалось, что не только все обычные линии (окружности, отрезки прямых, эллипсы и т. д.) имеют размерность единица по Урысону, но и все каиторовы линии имеют ту же размерность. Поэтому можно было определить понятие не только плоской, но и пространственной линии:
Линией называется континуум размерности единица.
А теперь было уже ясно, как определять поверхности, трехмерные тела и вообще множества любой размерности. Поскольку Урысон дает сначала определение размерности 0, затем с помощью этого определения — определение размерности 1, затем точно так же — определение размерности 2 и т. д., введенное Урысоном общее определение размерности называют индуктивным.
Работу надо не рецензировать, а печатать!
Урысон доказал много интереснейших теорем, связанных с введенным им понятием размерности. Но одну самую главную теорему ему никак не удавалось доказать: не получалось доказательство того, что самый обычный куб имеет размерность 3. После длительных усилий он нашел замечательный выход из положения, придумав новое определение размерности. Мы не будем детально излагать это определение, а поясним его на простейших фигурах.
Рис. 33
Если взять отрезок или окружность, то их можно разбить на сколь угодно малые части так, что каждая точка принадлежит не более чем двум кусочкам (рис. 33). При этом надо брать кусочки вместе с их границами (то есть конечными точками). Квадрат уже так разбить нельзя. На первый взгляд кажется, что при разбиении квадрата на куски всегда будут точки, принадлежащие четырем частям (рис. 34, а). Но если уложить части так, как кладут кирпичи на стройке, то удается добиться, чтобы каждая точка принадлежала не более чем трем различным частям (рис. 34, б). Точно так же у куба есть разбиение на маленькие параллелепипеды, при котором каждая точка принадлежит не более чем четырем параллелепипедам.
Рис. 34
Именно это свойство и принял Урысои за новое определение размерности. Фигура называется имеющей размерность n, если ее можно разбить на сколь угодно малые замкнутые части так, чтобы ни одна точка не принадлежала n+2 различным частям, но при любом достаточно мелком разбиении найдутся точки, принадлежащие n+1 различным частям.
Используя это определение размерности, Урысон доказал, что размерность квадрата равна 2, куба — 3 и т. д. А потом он показал, что это определение равносильно первоначально данному.
Построенная Урысоном теория размерности произвела глубокое впечатление на весь математический мир. Об этом ярко говорит следующий эпизод. Во время заграничной командировки Урысон сделал доклад о своих результатах в Геттингене. До прихода нацистов к власти Геттингенский университет был одним из основных математических центров. После доклада руководитель геттингенской математической школы знаменитый Давид Гильберт сказал, что эти результаты надо опубликовать в журнале "Mathematische Annalen" — одном из главных математических журналов того времени. Через несколько месяцев Урысон снова делал доклад в Геттингене и Гильберт спросил у своего помощника по журналу, напечатана ли уже работа Урысона. Тот ответил, что работа рецензируется. "Но я же ясно сказал, что ее надо не рецензировать, а печатать!" — воскликнул Гильберт. После столь недвусмысленного заявления статья была немедленно напечатана.
В течение трех лет продолжалась не имеющая равных по глубине и напряженности научная деятельность Урысона (за это время он опубликовал несколько десятков научных работ). Трагический случай оборвал его жизнь — он утонул 17 августа 1924 г., купаясь во время шторма в Бискайском заливе. За день до смерти он закончил очередную научную работу.
После смерти П. С. Урысона остались многочисленные черновики и наброски неопубликованных результатов. Его ближайший друг (и соавтор по многим работам) Павел Сергеевич Александров, отложив на некоторое время свои исследования, подготовил эти работы к печати, сделав тем самым и эти результаты Урысона достоянием всех математиков. В настоящее время теория размерности стала важной главой математики.
Глава 4. В поисках абсолюта
Новые осложнения.
Успехи, достигнутые в исследовании функций и линий при помощи теории множеств, сделали ее полноправным членом семьи математических наук. Это признание было зафиксировано на состоявшемся в 1897 г. Первом Международном конгрессе математиков, проходившем в швейцарском городе Цюрихе. В докладах виднейших специалистов по математическому анализу А. Гурвица[97] и Ж. Адамара[98] были показаны самые разнообразные применения множеств, вскрыта их связь с общей теорией так называемых аналитических