В поисках чуда — страница 39 из 60

Как пришпорили кентавра

«Циклоп» Лоуренса оказался слабосильным вот почему.

В нем протон или иной ион описывает Архимедову спираль. Трасса эта, похожая на пружину часового механизма, пролегает между двумя широкими и плоскими торцами (полюсами) постоянного магнита, поле которого, собственна, и закручивает ее в спираль. Протонная «карусель» организована в вакуумной камере внутри кожуха, напоминающего большую банку из-под гуталина, разрезанную надвое по диаметру. Обе половинки суть не что иное, как электроды (их называют дуантами). Между ними от края и до края проходит узкая щель. Раскручиваясь от центра «банки» к ее периферии, частица за один полный цикл дважды пересекает эту поперечную зону, причем во время первого полувитка она двигается через зазор в одну сторону, а в течение второго — в обратную, но электрическое поле тоже каждый раз меняет свое направление на противоположное, так что, когда частица пролетает через ускоряющий промежуток, оно всегда должно сопровождать ее бодрящим толчком в спину. Только вот всегда ли?

В соответствии с теорией относительности масса движущегося тела возрастает тем заметнее, чем ближе его скорость к световой, предельной — именно этот релятивистский эффект и сказался при переходе к большим энергиям. Утрачивая прежнюю легкость, частица становится менее поворотливой и уже не поспевает в урочный момент к тому участку, где ее должно подхлестнуть электрическое поле. Запоздав, она вместо подбадривающего толчка может встретить даже противодействие, тормозящее ее полет, — поле-то переменно! А нужно, чтобы периодичность, с какой она делает витки, равнялась частоте электромагнитного «погонялы» и оба колебательных процесса согласовались по фазе — четко «работали» в такт, совпадали по направлению. Как же сделать, ломали себе голову конструкторы, чтобы частицы не выбивались из ритма? Не подогнать ли к их нарастающим опозданиям расписание ударов электродного бича? Поначалу казалось: если постепенно увеличивать время между толчками, то все равно не удастся приспособиться к неаккуратному прибытию всех или даже большинства микротелец — нельзя же, право, для каждого из них подбирать свое удлинение периода!

Но при определенных условиях частицы сами будут дружно приспосабливаться к изменению частоты — к такому парадоксальному на первый взгляд выводу пришел Владимир Иосифович Векслер.

Пусть одна из спутниц отстала от своего роя и пожаловала к ускоряющей щели не в заданной фазе, так что получила вдогонку совсем слабый импульс. Значит, ее масса возрастет в меньшей степени, чем у остальных, и теперь уже начнут отставать от нее те, другие. Быстролетная странница, которая прежде плелась в хвосте, через несколько оборотов вырвется вперед и придет к зазору между дуантами раньше прочих. Если при этом разгоняющее поле наградит ее более чувствительным «тумаком», чем следующих за ней, она рано или поздно снова переместится из авангарда в арьергард.

Меняя темп, частицы будут колебаться около некой равновесной фазы. В результате такого саморегулирования вся «компания», невзирая на отдельные отклонения от общего правила, на некоторый внутренний разброд и даже отсев «отбившихся от стада», в среднем, в своем большинстве не утратит единства действий. Так что ее поведение (скажем, совместное отставание от первоначального расписания) может быть согласованным. И его удастся подчинить одному режиму, подобрав закон, по которому должна изменяться частота ускоряющего поля, — чтобы не нарушалась синхронность, согласованность во времени между круговращением всей «карусели» и толчками ее электрического «мотора».

Вскоре Лоуренс, усовершенствовав свое детище в соответствии с рекомендациями теоретиков, довел его мощность до 350 миллионов электрон-вольт. Проектная цифра оказалась превзойденной почти в шесть раз. Только прежнее устройство стало именоваться теперь синхроциклотроном, или фазотроном, ибо в нем частота на ускоряющем промежутке уже не оставалась постоянной, а регулировалась так, как того требовал новый режим. Через некоторое время все рекорды были побиты фазотроном в Дубне — чуть ли не 700 миллионов электрон-вольт!

В 1947, а затем и в 1949 году в Москве, в том же ФИАНе, появились сравнительно небольшие установки — первая на 30, вторая на 250 миллионов электрон-вольт. Созданные под руководством В. И. Векслера, они интересны тем, что в них периодичность электрического поля сохраняется одной и той же, зато напряженность магнитного меняется во времени. Их окрестили синхротронами. Если же варьируются оба параметра, получается «гибрид» — синхрофазотрон.

Таковым, например, является дубненский колосс. Он вступил в строй в апреле 1957 года. Во время его пуска у пульта управления стоял академик Векслер, воплотивший в замечательной советской машине свою идею автофазировки.

Большой победе нашей науки и техники предшествовал не только кропотливый анализ отечественного и зарубежного опыта, но и пионерский поиск, проведенный в ФИАНе группой ученых во главе с докторами физико-математических наук А. А. Коломенским и М. С. Рабиновичем. В 1953–1955 годах новые теоретические выводы тщательно проверялись на модели ныне действующего ускорителя, оттачивались его конструктивные узлы.

Некоторое представление о том, что это за «узлы», дает электромагнит. Он весит 36 тысяч тонн. А ведь он не сплошной, не дискообразный, как у циклотрона. Он сделан в форме пустотелой баранки, сердцевину которой составляет кольцевидная труба — вакуумная камера. Там, внутри, частицы движутся не по архимедовой спирали, не от центра к периферии, а по замкнутой круговой орбите одинакового радиуса. Такое решение сделала возможным остроумная идея — одновременно варьировать характеристики двух полей: напряженность магнитного и частоту электрического. Идея великолепная, но как нелегко было ее осуществить! Соответствие обоих параметров выдерживается с точностью до десятой доли процента. За их согласованностью строго следит специальное устройство. Оно непрерывно измеряет напряженность закручивающего поля и в случае малейшего ее отклонения подает сигнал, по которому корректируется частота поля разгоняющего, а она как-никак изменяется почти в 10 раз! Управление всем режимом ускорения полностью автоматизировано. С этими сложнейшими задачами блестяще справились специалисты Радиотехнического института АН СССР под руководством академика А. Л. Минца, Ф. А. Водопьянова, С. М. Рубчинского и других. Вакуумная камера, электромагнит и питающая его обмотку подстанция мощностью 140 тысяч киловатт (две Волховские ГЭС!) спроектированы исследовательским коллективом во главе с Д. В. Ефремовым, Е. Г. Комаром, Н. А. Моносзоном, А. М. Столовым.

Многолетний труд многолюдных исследовательских коллективов, мощный индустриальный базис, щедрые государственные ассигнования на развитие науки сделали реальностью еще одно чудо техники, сооружение которого под силу лишь стране с могучей экономикой и высокой культурой.

Решением нашего правительства эта уникальная установка поступила в распоряжение интернациональной семьи ученых, которыми в Объединенном институте ядерных исследований (ОИЯИ) представлено двенадцать разных стран. Там же находятся и другие ускорители. Есть они и в самой Москве, и в Новосибирске, и в Харькове, и в Томске, и в Ереване, и во многих других городах. Разные у них мощности, различны их типы. Но ученые и инженеры не устают искать, совершенствуя старые модели, изобретая новые, — покорение корпускулярного луча продолжается.

В 1953 году А. А. Коломенский, В. А. Петухов и М. С. Рабинович, а двумя годами позднее Окава и Саймон (США) предложили еще одну разновидность ускорителя — кольцевой фазотрон. В нем магнитное поле сохраняется постоянным во времени, а это, помимо прочих технических преимуществ, дает реальную перспективу в сотни раз повысить интенсивность пучка по сравнению с той, что достигнута равномощными ускорителями, где магнитное поле переменно.

Конечно, в обычном фазотроне разгонять частицы до энергий более одного миллиарда электрон-вольт нереально. Но именно в обычном. Ибо у него магнит сплошной. Его вес, как и его же потребность в электропитании, с увеличением мощности установки до семизначного числа возросли бы чудовищно.

Советские ученые придумали, однако, способ, как устранить, казалось бы, непреодолимую трудность.

Они пришли к выводу: магнит и здесь можно значительно облегчить, если сделать его в форме узкого кольца, собранного из отдельных секторов. При переходе от предшествующего сектора к последующему поле поочередно меняет свое направление на обратное и своими силовыми линиями «прижимает» вихляющуюся частицу к круговой орбите то с одного бока, то с другого. Так осуществляется жесткая фокусировка.

Нехитрая вроде бы мысль (впервые ее подал в. общих чертах греческий инженер Н. Кристофилос еще в 1950 году). А сотрудникам Брукхейвенской национальной лаборатории и их коллегам из Европейского центра ядерных исследований (ЦЕРН) понадобилось 8 лет напряженной теоретической и экспериментальной работы, чтобы спроектировать два синхрофазотрона, на 30 миллиардов электрон-вольт каждый.

Вдвое более мощный серпуховский ускоритель, созданный под руководством А. Л. Минца и В. В. Владимирского, также воплотил в себе эту замечательную идею. Его магнит, имея в 8 раз больший поперечник, намного легче, чем у дубненской машины, где применена мягкая (слабая) фокусировка.

Развивая далее принцип сильной фокусировки, коллектив физиков ОИЯИ во главе с В. П. Дмитриевским, В. П. Джелеповым и Б. И. Замолодчиковым построил модель изохронного циклотрона.

При всей ограниченности лоуренсовское изобретение позволяет получать самые густые рои разогнанных частиц. Как поднять его «потолок», не утратив его достоинств? Если сделать дискообразные торцы магнита не плоскими, а рельефными (по Уилсону — «в стиле рококо»), то в создаваемом ими поле появятся перемежающие друг друга сгущения и разрежения. Они-то и помогут частицам раскручиваться в заданном режиме, не сбиваясь с пути истинного.