Однако Расселу удалось вывести вариант формальной системы, позволяющий охватить всю математику и свободный от всех известных к тому времени парадоксов, с опорой именно на идеи и работы Фреге. Полученный им результат, опубликованный в 1902 г. в книге «Principia Mathematica» (написанной совместно с А.Н. Уайтхедом), фактически стал аксиоматизацией логики, а Д. Гильберт считал, что его «можно рассматривать как венец всех усилий по аксиоматизации науки».
Была и ещё одна причина столь пристального интереса математиков к основаниям своей дисциплины. Дело в том, что на рубеже XIX и XX столетий в теории множеств были обнаружены противоречия, для обозначения которых был придуман эвфемизм «парадоксы теории множеств». Наиболее известный из них — знаменитый парадокс Рассела — был, увы, не единственным. Более того, для большинства учёных было очевидно, что за открытием новых странностей дело не станет. Их появление оказало на математический мир, по выражению Гильберта, «катастрофическое воздействие», поскольку теория множеств играла роль фундамента, на котором возводилось всё здание науки о числах. «Перед лицом этих парадоксов надо признать, что положение, в котором мы пребываем сейчас, на длительное время невыносимо. Подумайте: в математике — этом образце надежности и истинности — понятия и умозаключения, как их всякий изучает, преподает и применяет, приводят к нелепостям. Где же тогда искать надежность и истинность, если даже само математическое мышление дает осечку?», — сокрушался Гильберт в своем докладе на съезде математиков в июне 1925 г.
Таким образом, впервые за три тысячелетия математики вплотную подошли к изучению самых глубинных оснований своей дисциплины. Сложилась любопытная картина: любители цифр научились четко объяснять, по каким правилам они ведут свои вычисления, им оставалось лишь доказать «законность» принятых ими оснований с тем, чтобы исключить любые сомнения, порождаемые злополучными парадоксами. И в первой половине 20-х годов великий Гильберт, вокруг которого сложилась к тому времени школа блестящих последователей, в целой серии работ наметил план исследований в области оснований математики, получивший впоследствии название «Гёттингенской программы». В максимально упрощенном виде её можно изложить следующим образом: математику можно представить в виде набора следствий, выводимых из некоторой системы аксиом, и доказать, что:
1. Математика является полной, т. е. любое математическое утверждение можно доказать или опровергнуть, основываясь на правилах самой дисциплины.
2. Математика является непротиворечивой, т. е. нельзя доказать и одновременно опровергнуть какое-либо утверждение, не нарушая принятых правил рассуждения.
3. Математика является разрешимой, т. е., пользуясь правилами, можно выяснить относительно любого математического утверждения, доказуемо оно или опровержимо.
Фактически программа Гильберта стремилась выработать некую общую процедуру для ответа на все математические вопросы или хотя бы доказать существование таковой. Сам учёный был уверен в утвердительном ответе на все три сформулированных им вопроса: по его мнению, математика действительно была полной, непротиворечивой и разрешимой. Оставалось только это доказать.
Более того, Гильберт полагал, что аксиоматический метод может стать основой не только математики, но и науки в целом. В 1930 г. в статье «Познание природы и логика» он писал: «…даже в самых обширных по своему охвату областях знания нередко бывает достаточно небольшого числа исходных положений, обычно называемых аксиомами, над которыми затем чисто логическим путем надстраивается всё здание рассматриваемой теории».
Какими были бы для дальнейшего развития науки последствия успеха Гильберта и его школы? Если бы, как он считал, вся математика (и наука в целом) сводилась к системе аксиом, то их можно было бы ввести в вычислительную машину, способную по программе, следующей общим логическим правилам, обосновать любое утверждение (т. е. доказать теорему), вытекающее из исходных утверждений.
Будь теория Гильберта реализована, работающие в круглосуточном режиме суперкомпьютеры непрерывно доказывали бы всё новые и новые теоремы, размещая их на бесчисленных сайтах «всемирной паутины». Вслед за математикой «аксиоматическая эпоха» наступила бы в физике, химии, биологии и, наконец, очередь дошла бы и до науки о человеческом сознании. Согласитесь, окружающий нас мир, да и мы сами, выглядели бы в подобном случае несколько иначе.
Однако «вселенская аксиоматизация» не состоялась. Вся суперамбициозная, грандиозная программа, над которой несколько десятилетий работали крупнейшие математики мира, была опровергнута одной-единственной теоремой. Её автором был Курт Гёдель, которому к тому времени едва исполнилось 25 лет.
В 1930 г. на конференции, организованной «Венским кружком» в Кёнигсберге, он сделал доклад «О полноте логического исчисления», а в начале следующего года опубликовал статью «О принципиально не разрешимых положениях в системе Principia Mathematica и родственных ей системах». Центральным пунктом его работы были формулировка и доказательство теоремы, которая сыграла фундаментальную роль во всем дальнейшем развитии математики, и не только её. Речь идет о знаменитой теореме Гёделя о неполноте. Наиболее распространенная, хотя и не вполне строгая её формулировка утверждает, что «для любой непротиворечивой системы аксиом существует утверждение, которое в рамках принятой аксиоматической системы не может быть ни доказано, ни опровергнуто». Тем самым Гёдель дал отрицательный ответ на первое утверждение, сформулированное Гильбертом.
Любопытно, что на этой же конференции с докладом на тему «Каузальное знание и квантовая механика» выступил Вернер Гейзенберг. В этом докладе были намечены первые подходы к его знаменитым «соотношениям неопределенности».
Выводы Гёделя произвели в математическом сообществе эффект интеллектуальной бомбы, тем более что вскоре на их основе были получены опровержения двух других пунктов программы Гильберта. Оказалось, что математика неполна, неразрешима, и её непротиворечивость нельзя доказать (в рамках той самой системы, непротиворечивость которой доказывается).
С тех пор прошло три четверти века, но споры о том, что же все-таки доказал Гёдель, не утихают. Особенно жаркие прения идут в околонаучных кругах. «Теорема Гёделя о неполноте является поистине уникальной. На неё ссылаются всякий раз, когда хотят доказать „всё на свете“ — от наличия богов до отсутствия разума», — пишет выдающийся современный математик В.А. Успенский.
Если оставить в стороне многочисленные подобные спекуляции, то нужно отметить, что учёные разделились в вопросе оценки роли Гёделя на две группы. Одни вслед за Расселом считают, что знаменитая теорема, которая легла в основу современной математической логики, тем не менее, оказала весьма незначительное влияние на дальнейшую работу за пределами данной дисциплины — математики как доказывали свои теоремы в «догёделевскую» эпоху, так и продолжают доказывать их и по сей день.
Что же касается фантасмагорического видения компьютеров, непрерывно доказывающих всё новые теоремы, то смысл подобной деятельности у многих специалистов вызывает большое сомнение. Ведь для математики важна не только формулировка доказанной теоремы, но и её понимание, поскольку именно оно позволяет выявить связь между различными объектами и понять, в каком направлении можно двигаться дальше. Без такого понимания теоремы, генерируемые на основе правил формализованного вывода, представляют собой лишь своего рода «математический спам», — таково мнение сотрудника кафедры математической логики и теории алгоритмов мехмата МГУ Александра Шеня.
Похожим образом рассуждал и сам Гёдель. Тем, кто упрекал его в разрушении целостности фундамента математики, он отвечал, что по сути ничего не изменилось, основы остались по-прежнему незыблемыми, а его теорема привела лишь к переоценке роли интуиции и личной инициативы в той области науки, которой управляют железные законы логики, оставляющие, казалось бы, мало места для подобных достоинств.
Однако некоторые ученые придерживаются другого мнения. Действительно, если считать умение логически рассуждать основной характеристикой человеческого разума или, по крайней мере, главным его инструментом, то теорема Гёделя прямо указывает на ограниченность возможностей нашего мозга. Согласитесь, что человеку, воспитанному на вере в бесконечное могущество мысли, очень трудно принять тезис о пределах её власти. Скорее уж речь может идти об ограниченности наших представлений о собственных ментальных возможностях. Многие специалисты полагают, что формально-вычислительные, «аристотелевские» процессы, лежащие в основе логического мышления, составляют лишь часть человеческого сознания. Другая же его область, принципиально «невычислительная», отвечает за такие направления, как интуиция, творческие озарения и понимание. И если первая половина разума подпадает под гёделевские ограничения, то вторая от подобных рамок свободна.
Наиболее последовательный сторонник подобной точки зрения — крупнейший специалист в области математики и теоретической физики Роджер Пенроуз — пошел ещё дальше. Он предположил существование некоторых квантовых эффектов невычислительного характера, обеспечивающих реализацию творческих актов сознания. И хотя многие его коллеги критически относятся к идее наделить человеческий мозг гипотетическими квантовыми механизмами, Р. Пенроуз со своими сотрудниками уже разработал схему эксперимента, который должен, по их мнению, подтвердить их наличие.
Одним из многочисленных следствий гипотезы Пенроуза может стать, в частности, вывод о принципиальной невозможности создания искусственного интеллекта на основе современных вычислительных устройств, даже в том случае, если появление квантовых компьютеров приведёт к грандиозному прорыву в области вычислительной техники. Дело в том, что любой компьютер может лишь всё более детально моделировать работу формально-логической, «вычислительной» деятельности человеческого сознания, но «невычислительные» способности интеллекта ему не доступны.