Считающие метафизику самой неограниченной или умозрительной из дисциплин заблуждаются; по сравнению с космологией метафизика заурядна и обыденна.
Прохладным декабрьским утром 1979 года в Пало Альто Алан Гут что есть силы крутил педали велосипеда, спеша в свой офис в группе теоретической физики в SLAC, Стэнфордском центре линейных ускорителей. Добравшись до рабочего стола, он открыл блокнот на новой странице и написал:
ПОТРЯСАЮЩАЯ ДОГАДКА: подобный тип переохлаждения может объяснить, почему Вселенная сегодня такая невероятно плоская, — и, следовательно, разрешить парадокс тонкой подстройки, который Боб Дике описал в своих лекциях на дне Эйнштейна.
Он аккуратно обвел эти слова прямоугольной рамкой. Затем еще одной.[261]
Будучи ученым, вы живете ради того дня, когда вам удастся добиться результата — это может быть теоретическая догадка или экспериментальное открытие — настолько изумительного, что он заслуживает быть обведенным рамкой. В редких случаях результат достоин двойной рамки — обычно он в корне меняет жизнь человека, а заодно и направление хода научной мысли. Как пишет сам Гут, других результатов, которые следовало бы обвести двойной рамкой, в его блокнотах нет. А тот блокнот, которым он пользовался во времена работы в SLAC, теперь входит в экспозицию планетария Адлера в Чикаго, раскрытый на странице с процитированной выше записью.
Гут напал на след сценария, сегодня известного под названием «инфляция». Суть идеи в том, что ранняя Вселенная была заполнена вре́менной формой темной энергии с ультравысокой плотностью, что заставляло пространство ускоряться в невероятном темпе (упомянутое выше «переохлаждение»). Это простое предположение способно дать объяснение практически всему, что касается условий, наблюдаемых в нашей ранней Вселенной, — от геометрии пространства до распределения возмущений плотности в космическом микроволновом излучении. И хотя мы пока не располагаем окончательными доказательствами того, что инфляция на самом деле происходила, эта идея, возможно, оказалась самой влиятельной в космологии за последние несколько десятилетий.[262]
Рис. 14.1. Алан Гут, чей сценарий инфляционной Вселенной может помочь в объяснении, почему наша наблюдаемая Вселенная так близка к однородному и плоскому состоянию
Из этого, конечно же, не следует ее истинность. Если в ранней Вселенной в течение какого-то периода времени доминировала темная энергия с высокой плотностью, то можно понять, почему Вселенная эволюционировала именно в то состояние, в котором она, очевидно, находилась в ранние годы. Однако мы подвергаем себя опасности упустить из виду важный вопрос: почему Вселенная вообще находилась под властью темной энергии? Инфляция сама по себе не дает никакого ответа на загадку, почему энтропия в ранней Вселенной была низкой, за исключением предположения, что при зарождении Вселенной энтропия была еще ниже (что вполне может оказаться небольшим жульничеством).
Тем не менее инфляция — это невероятно привлекательная идея, хорошо согласующаяся с наблюдаемыми свойствами нашей ранней Вселенной. И благодаря ей мы пришли к определенным удивительным выводам, которые не предвидел даже сам Гут, когда впервые предложил этот сценарий, — включая, как мы скоро узнаем, способ придать реалистичность идее Мультиленной. По мнению большинства работающих в настоящее время космологов, та или иная версия инфляционной теории, скорее всего, окажется в итоге правильной. Единственный вопрос — почему инфляция вообще происходила?
Кривизна пространства
Представьте себе, что вы взяли карандаш и пытаетесь поставить его на кончик грифеля. Очевидно, что он сразу же начнет падать. Но если бы в вашем распоряжении была чрезвычайно устойчивая поверхность, а вы были бы настоящим мастером балансировки, то вы бы могли установить эту конструкцию так, чтобы карандаш оставался в вертикальном положении очень долгое время. Скажем, более 14 миллиардов лет.
Этот пример хорошо иллюстрирует нашу Вселенную, а карандаш представляет такую ее характеристику, как кривизна пространства. В действительности это не самое запутанное понятие, но космологи зачастую искусственно усложняют его, говоря то о «кривизне пространства—времени», то о «кривизне пространства». Это разные вещи, и нам приходится каждый раз из контекста догадываться, что именно имелось в виду. Так же как пространство—время может обладать кривизной, кривизна может быть и у пространства самого по себе, и вопрос о том, искривлено ли пространство, абсолютно не связан с вопросом искривленности пространства—времени.[263]
Одна из проблем, которые потенциально могут всплыть при обсуждении кривизны пространства самого по себе, заключается в том, что общая теория относительности предоставляет нам возможность нарезать пространство—время на трехмерные копии эволюционирующего во времени пространства множеством разных способов; определение «пространства» не уникально. К счастью, в нашей наблюдаемой Вселенной существует естественный вариант подобной нарезки: мы определяем «время» так, чтобы плотность материи оставалась приблизительно одинаковой в пространстве на больших масштабах, но уменьшалась по мере расширения Вселенной. Другими словами, распределение материи определяет естественную покоящуюся систему координат во Вселенной. Это ни в коем случае не нарушает принципы относительности, так как отражает свойства одной конкретной конфигурации материи, а не базовые законы физики.
В целом пространство может совершенно произвольным способом искривляться в разных точках, и для того чтобы справиться с математикой, описывающей искривление, была разработана особая дисциплина, носящая название дифференциальной геометрии. Но космологам повезло: пространство при рассмотрении очень больших расстояний является однородным и выглядит одинаково во всех направлениях. В такой ситуации достаточно указать одно значение — «пространственную кривизну», чтобы узнать все необходимое о геометрии трехмерного пространства. Кривизна пространства может выражаться положительным числом, отрицательным числом или быть равной нулю. Если кривизна равна нулю, то мы, естественно, говорим, что пространство «плоское» и обладает всеми геометрическими характеристиками в привычном для нас понимании. Эти характеристики впервые были сформулированы Эвклидом и включают такие свойства, как «параллельные линии никогда не пересекаются» и «сумма углов треугольника равна в точности 180 градусам». Если кривизна положительна, то пространство напоминает поверхность сферы, — за исключением того, что оно трехмерно. Линии, параллельные на каком-то участке, в конечном счете пересекутся, а сумма углов треугольника превышает 180 градусов. Если же кривизна отрицательная, то пространство похоже на седло или картофельные чипсы. Линии, параллельные на каком-то участке, расходятся в стороны, а сумма углов треугольника — ну, вы, вероятно, уже догадались.[264]
Рис. 14.2. Варианты пространств с постоянной кривизной. Сверху вниз: положительная кривизна, как на сфере; отрицательная кривизна, как на седле; нулевая кривизна, как на плоской поверхности
Согласно правилам общей теории относительности, если при рождении Вселенная была плоской, то она остается плоской. Если она появилась в искривленном состоянии, то кривизна постепенно, по мере расширения Вселенной, уменьшается. Однако, как мы уже знаем, плотность материи и излучения также уменьшается. (Пока позабудьте даже о том, что вы когда-либо слышали такой термин, как темная энергия, потому что она все ставит с ног на голову.) Написав уравнения, можно убедиться, что плотность материи или излучения уменьшается быстрее, чем вклад кривизны пространства. По сравнению с материей и излучением кривизна по мере расширения Вселенной оказывает все большее влияние на эволюцию Вселенной.
Следовательно, если в ранней Вселенной присутствовал хоть сколько-нибудь заметный вклад кривизны, сегодня искривленность Вселенной должна быть очевидной. Плоская Вселенная подобна карандашу, поставленному на кончик грифеля: малейшее отклонение влево или вправо моментально приведет к падению карандаша. Схожим образом, любое мельчайшее отклонение от идеальной плоскостности в ранние годы должно с годами становиться все более и более заметным. Но наблюдения показывают, что Вселенная выглядит очень плоской. Насколько можно судить, никакой поддающейся измерению кривизны в современной Вселенной не наблюдается.[265]
Такое состояние дел известно под названием проблемы плоскостности. Раз Вселенная настолько плоская сегодня, она должна была быть невероятно плоской и в прошлом. Но почему?
Проблема плоскостности имеет определенное сходство с проблемой энтропии, которую мы разбирали в предыдущей главе. В обоих случаях загвоздка не в ужасающем несоответствии между теорией и наблюдением — нам достаточно постулировать, что ранняя Вселенная пребывала в какой-то определенной форме, и тогда головоломка прекрасно складывается. Проблема в том, что «определенная форма» создает впечатление формы неестественной и принудительно тонко подстроенной, причем без всяких очевидных на то причин. Конечно, мы могли бы сказать, что и энтропия и пространственная кривизна ранней Вселенной были малы, и на этом закончить историю безо всяких дополнительных объяснений. Но эти очевидно неестественные свойства Вселенной могут быть ключом к чему-то важному, поэтому надлежит относиться к ним со всей серьезностью.
Магнитные монополи
Когда Алан Гут наткнулся на идею инфляции, он не пытался решить проблему плоскостности. Его интересовала совершенно другая загадка, известная под названием проблемы магнитных монополей.
Гут, если уж на то пошло, космологией вообще особенно не интересовался. 1979 год был для него девятым годом постдоктората — фазы научной карьеры между аспирантурой и вхождением в преподавательский состав высшего учебного заведения, когда ученый может сконцентрироваться на исследованиях, не беспокоясь о преподавании и прочих академических обязанностях. (И без каких-либо гарантий обеспечения работой; большинство постдоков так никогда и не получают место на факультете и в конце концов уходят с научной арены.) Девять лет — это больше, чем талантливому постдоку, как правило, требуется, чтобы получить где-то должность доцента, но и история публикаций Гута на том этапе его карьеры не отражала дарования, которое в нем видели другие. Какое-то время он трудился над впавшей в общественную немилость теорией кварков, а затем переключился на попытки понять невнятное предсказание недавно ставших популярными теорий великого объединения — о существовании магнитных монополей.
Теории великого объединения (Grand Unified Theories, GUT) представляют собой попытку унифицированного объяснения всех сил природы, за исключением гравитации. Они завоевали большую популярность в 1970-х годах как благодаря присущей им простоте, так и за счет весьма интригующего предсказания, согласно которому протон, непоколебимая элементарная частица, которая (совместно с электроном и нейтроном) формирует основу для всей окружающей нас материи, в конце концов распадается на более легкие частицы. Для поиска доказательств протонного радиоактивного распада были построены гигантские лаборатории, но пока никаких свидетельств этого явления обнаружено не было. Это не означает, что теории великого объединения неверны; они все еще довольно популярны, но неудача с обнаружением протонного распада заставила физиков погрузиться в сомнения относительно того, каким же образом эти теории могут быть проверены.
Также теории великого объединения предсказали существование нового типа частиц — магнитного монополя. Обычные заряженные частицы — это электрические монополи, то есть они несут либо положительный заряд, либо отрицательный, и на этом история заканчивается. Никому еще не удалось обнаружить изолированный «магнитный заряд» в природе. Магниты, как мы их знаем, всегда остаются диполями: у них есть северный и южный полюсы. Разрежьте магнит пополам между полюсами, и в месте разреза появятся два новых полюса. Насколько можно судить по результатам экспериментов, поиск изолированного магнитного полюса — монополя — это практически то же самое, что поиск фрагмента струны только с одним концом.
Однако, согласно теориям великого объединения, монополи должны быть реальными. В конце 1970-х годов люди осознали, что можно просто сесть и подсчитать число монополей, которые должны быть рождены в результате Большого взрыва. И ответ оказался таков: их слишком много. Общая масса монополей, согласно этим расчетам, должна оказаться намного выше общей массы обычных протонов, нейтронов и электронов. Магнитные монополи должны постоянно пролетать сквозь ваше тело.
Конечно же, из этой затруднительной ситуации можно выпутаться довольно простым способом, заявив, что теории великого объединения ошибочны. И это может быть верным ответом. Но Гут, размышляя над данной проблемой, наткнулся на куда более интересную идею: инфляцию.
Инфляция
Темная энергия — источник плотности энергии, остающейся практически (или точно) постоянной на всем протяжении пространства и времени, не разреживаясь по мере расширения Вселенной, — заставляет Вселенную ускоряться, постоянно подталкивая расширение. Мы полагаем, что большая часть энергии во Вселенной — от 70 до 75 % общей энергии — в настоящее время пребывает в форме темной энергии. Но в прошлом, когда плотность материи и излучения была выше, темная энергия, обладавшая, судя по всему, примерно такой же плотностью, как и сегодня, играла относительно незначительную роль.
Теперь вообразите, что в какой-то другой период жизни очень ранней Вселенной существовала темная энергия с еще большей плотностью энергии. Назовем эту необычайно плотную темную энергию «темной суперэнергией».[266] Она доминировала во Вселенной и заставляла пространство ускоряться в колоссальном темпе. Затем — по причинам, которые будут названы позже, — эта темная суперэнергия внезапно распалась на материю и излучение, а те в свою очередь сформировали горячую плазму, из которой, по нашим представлениям, состояла ранняя Вселенная. Распад оказался почти полным, но все же относительно небольшая плотность темной энергии сохранилась, и в последнее время этот остаток начал существенно влиять на динамику Вселенной.
Таков сценарий инфляции. По сути, инфляция начинается в крохотной области пространства и раздувает ее до невероятных размеров. Возможно, вы задаетесь вопросом, почему это так важно: что такого необычного во временной фазе темной суперэнергии, если она просто-напросто распадается на материю и излучение? Популярность инфляционной идеи объясняется тем, что она аналогична исповеди — полностью стирает все прошлые грехи.
Рис. 14.3. Инфляция начинается в крохотном участке пространства и быстро расширяет его до громадных размеров. На этом рисунке масштаб абсолютно не соблюден; инфляция происходит за ничтожно малую долю секунды и растягивает пространство более чем в 1026 раз
Вернемся к проблеме монополей. Если теории великого объединения верны, то монополи возникают в огромном количестве в самый ранний период жизни Вселенной. Итак, представим себе, что инфляция происходит довольно рано, но все же после возникновения монополей. В этом случае, если инфляция продолжается достаточно долго, пространство увеличивается до такого невероятного размера, что концентрация монополей уменьшается практически до нуля. При условии, что распад темной суперэнергии на материю и излучение не порождает дополнительных монополей (а этого не произойдет, если процесс не слишком энергетически эффективный), вуаля! — никакой проблемы монополей не остается.
То же самое и с кривизной пространства. По сути, проблема состояла в том, что кривизна падает намного медленнее, чем разреживаются материя и излучение, поэтому если хоть какая-то кривизна существовала в ранний период, она была бы хорошо заметна сегодня. Но темная энергия разреживается еще медленнее, чем кривизна, — на самом деле ее плотность вообще почти не уменьшается. Так что опять мы заключаем, что если инфляция займет достаточно много времени, то кривизна успеет уменьшиться почти до нуля, прежде чем материя и излучение будут заново созданы в процессе распада темной суперэнергии. Никакой больше проблемы плоскостности.
Вы понимаете, почему инфляционная идея так взволновала Гута. Он размышлял о проблеме монополей, но с другой точки зрения — пытаясь не решить ее, а использовать в качестве аргумента против теорий великого объединения. В своей исходной работе, посвященной данной проблеме и написанной в соавторстве с физиком из Корнелльского университета Генри Таем, он вообще проигнорировал возможную роль темной энергии и заключил, что решить проблему монополей чрезвычайно сложно. Однако стоило Гуту как следует задуматься о возможных эффектах раннего периода доминирования темной энергии, как решение проблемы монополей упало к нему в руки в готовом виде, — одно это заслуживает рамочки, по крайней мере одинарной.
Необходимость добавить вторую рамочку стала очевидной, когда Гут понял, что данная идея также способна решить проблему плоскостности, о которой он до этого даже не думал. Совершенно случайно чуть раньше Гут посетил лекцию физика из Принстонского университета Роберта Дике, одного из первых ученых, занявшихся исследованием космического микроволнового фонового излучения. В своей лекции, прочитанной в Корнелльском университете в рамках мероприятия под названием «день Эйнштейна», Дике упомянул о нескольких невыясненных вопросах традиционной космологической модели. Одним из них была проблема плоскостности, которая врезалась в память Гуту, несмотря на то что его исследования в то время не были особо связаны с космологией.
В результате, осознав, что инфляция решает не только проблему монополей, но и проблему плоскостности, Гут ясно увидел перспективы поистине великого открытия. И действительно, благодаря этому открытию Гут, можно сказать, проснулся знаменитым, превратившись из едва сводящего концы с концами постдока в самого желанного кандидата на рынке профессорских вакансий. В итоге он решил вернуться в MIT, где заканчивал аспирантуру, и по сей день он преподает в этом учебном заведении.
Проблема горизонта
Прорабатывая следствия инфляционной теории, Гут осознал, что данный сценарий предлагает решение еще одной загадки космологической тонкой подстройки — проблемы горизонта. И это на самом деле очень важно, так как, по мнению многих ученых, проблема горизонта — самая запутанная и требующая наибольшего внимания в стандартной космологии Большого взрыва.
Эта проблема произрастает из того простого факта, что ранняя Вселенная выглядит практически одинаково во всех точках, как бы далеко они ни были разнесены. В предыдущей главе мы упомянули о том, что «типичное» состояние ранней Вселенной, даже если зафиксировать невероятную плотность и стремительное расширение, проявляет тенденцию к разнообразным флуктуациям и возникновению неоднородностей — оно должно напоминать состояние сжимающейся Вселенной с обращенным временем. Так что однородность Вселенной является как раз тем свойством, которое необходимо объяснить. Можно сказать, что проблема горизонта — это в действительности отражение проблемы энтропии в том виде, как мы рассматривали ее выше, несмотря на то что решается проблема горизонта обычно совершенно другим способом.
Мы знаем, что такое горизонт в контексте черных дыр, — это такая область, попав в которую мы никогда уже не сможем вернуться во внешний мир. Или, если точнее, сможем, но только если начнем перемещаться со скоростью выше скорости света. Однако в стандартной модели Большого взрыва существует совершенно особое понятие горизонта, базирующееся на том факте, что Большой взрыв произошел конечное время тому назад. Это «космологический горизонт», в противоположность «горизонту событий» вокруг черной дыры. Нарисуем направленный в прошлое световой конус из нашего текущего местоположения в пространстве—времени; в далеком прошлом этот световой конус пересечется с началом Вселенной. Рассмотрим теперь мировую линию частицы, родившейся при Большом взрыве за пределами нашего светового конуса: никакой сигнал с этой мировой линии никогда не сможет достичь нашего текущего события (если только его скорость не превысит скорость света). Следовательно, можно сказать, что такая частица находится за пределами нашего космологического горизонта, как показано на рис. 14.4.
Рис. 14.4. Космологический горизонт определяется как область, на границе которой наш световой конус прошлого встречается с Большим взрывом. По мере того как мы продвигаемся вперед во времени, наш горизонт увеличивается. Мировая линия, находившаяся за пределами нашего горизонта в момент A, оказывается внутри горизонта, когда мы достигаем момента B
Все это хорошо и прекрасно, но самое интересное начинается тогда, когда мы понимаем, что в отличие от горизонта событий статической черной дыры наш космологический горизонт со временем, по мере того как мы продвигаемся вдоль нашей мировой линии, увеличивается. Чем старше мы становимся, тем больше пространства—времени охватывает наш световой конус прошлого, и мировые линии других частиц, которые раньше находились снаружи, попадают внутрь нашего горизонта. (Сами мировые линии не меняются — наш горизонт расширяется и захватывает их тоже.)
Рис. 14.5. Проблема горизонта. Мы смотрим на точки космического микроволнового фонового излучения, находящиеся очень далеко друг от друга, и замечаем, что их температура почти одинакова. Но горизонты этих точек не пересекаются, поэтому никакие сигналы пройти между ними не могли. Как же эти точки умудрились прийти к одной и той же температуре?
Следовательно, у событий, оставшихся далеко в прошлом, космологические горизонты меньше; они ближе (по времени) к Большому взрыву, поэтому их прошлое содержит меньше событий. Рассмотрим разные точки, наблюдаемые при изучении космического микроволнового фонового излучения на противоположных сторонах неба, как показано на рис. 14.5. Микроволновое фоновое излучение позволяет нам увидеть изображение Вселенной на момент около 380 000 лет после Большого взрыва. Тогда Вселенная стала прозрачной: температура понизилась достаточно, для того чтобы электроны и протоны могли связаться в атомы. В зависимости от локальных условий в выбранных нами точках — плотности, скорости расширения и т. д. — сегодня для нас они могли бы выглядеть совершенно по-разному. Но не выглядят. Насколько мы видим, все точки на микроволновом небе имеют почти одинаковую температуру; от одной области к другой температура может различаться лишь на тысячную долю процента. Следовательно, физические условия во всем этом множестве точек должны были быть достаточно схожими.
Именно в этом и заключается суть проблемы горизонта: как эти разнесенные далеко в стороны точки узнали, к какому общему состоянию им нужно прийти? Несмотря на то что все они находятся в пределах нашего космологического горизонта, их собственные горизонты куда меньше, поскольку сами точки намного ближе к Большому взрыву. Сегодня вычисление размера космологических горизонтов для подобных точек (в предположениях традиционной модели Большого взрыва) — стандартное упражнение для аспирантов, изучающих космологию; и ответ таков, что у точек, расстояние между которыми на небе составляет более одного градуса, горизонты вообще не пересекаются. Другими словами, в пространстве—времени нет таких событий, которые бы принадлежали прошлому всех этих разных точек, и не существует способа, при помощи которого они могли бы обменяться какими-либо сигналами.[267] Тем не менее физические условия во всех них практически идентичны. Как такое возможно?
Это сравнимо с тем, как если бы вы попросили несколько тысяч людей выбрать случайное число от единицы до миллиона и все они назвали числа между 836 820 и 836 830. Вы были бы уверены, что это не простая случайность, — что каким-то образом все эти люди сговорились между собой. Но как? Это проблема горизонта. Как вы видите, она тесно связана с проблемой энтропии. Когда во всей ранней Вселенной, куда ни посмотри, наблюдаются чрезвычайно схожие условия, это, определенно, низкоэнтропийная конфигурация, так как число способов устроить это крайне ограниченно.
Инфляция предлагает изящное решение проблемы горизонта. В эру инфляции пространство расширяется невероятно сильно; точки, которые изначально находились довольно близко друг к другу, разносятся очень далеко. В частности, точки, между которыми было огромное расстояние на момент, когда сформировалось микроволновое фоновое излучение, до начала инфляции, находились вплотную друг к другу, — и это ответ на вопрос: «Как они узнали о схожих условиях?». Что еще важнее, во время инфляции во Вселенной доминировала темная суперэнергия, которая, как и любая другая форма темной энергии, обладает везде одинаковой плотностью. Возможно, на участке пространства, где началась инфляция, существовали и другие формы энергии, но они быстро рассеялись в расширяющемся пространстве; раздувая пространство, инфляция делает его плоским — так вы расправляете скомканную простыню, растягивая ее в стороны за уголки. Естественным результатом инфляции является Вселенная, выглядящая очень однородной на больших масштабах.
Истинный и ложный вакуумы
Инфляция — это простой механизм объяснения свойств ранней Вселенной: она растягивает небольшой участок пространства, делая его плоским и гладким и решая таким образом проблемы плоскостности и горизонта. Кроме того, она избавляет нас от нежелательных пережитков прошлого, таких как магнитные монополи. Но как это все в действительности работает?
Очевидно, что фокус с инфляцией зависит от наличия вре́менной формы темной суперэнергии, которая в течение какого-то времени стимулирует расширение Вселенной, а затем внезапно исчезает. Такое поведение может казаться нелогичным, ведь определяющим свойством темной энергии является почти полное ее постоянство в пространстве и времени. По большей части это действительно так, но могут также происходить неожиданные скачки ее плотности — «фазовые переходы», при которых значение темной энергии резко падает, как при схлопывании пузыря. Фазовый переход подобного рода предоставляет секретный ключик к пониманию инфляции.
Возможно, вы задаетесь вопросом, что же в конце концов порождает эту темную суперэнергию, стимулирующую инфляцию. Ответ — квантовое поле, точно такое же, как поля, вибрации которых обнаруживаются в форме окружающих нас частиц. К сожалению, ни одно из известных нам полей — поле нейтрино, электромагнитное поле и т. д. — не подходит для этой работы. Так что космологи попросту предположили, что должно существовать какое-то совершенно новое поле, приводящее к инфляции, и недолго думая нарекли его «инфлатоном». Придумывать новые поля на пустом месте — занятие не настолько постыдное, как может показаться; правда в том, что инфляция предположительно происходит при энергиях, намного превышающих те, которые мы в состоянии напрямую воссоздать в лабораторных условиях здесь, на Земле. Без сомнения, при таких энергиях может существовать любое количество новых полей, пусть даже мы не не знаем, что это за поля; вопрос только в том, обладают ли какие-либо из них подходящими свойствами, чтобы выполнить функции инфлатона (то есть инициировать вре́менную фазу темной суперэнергии, которая расширяет Вселенную до невероятных размеров, а затем распадается и исчезает).
Пока в наших обсуждениях квантовых полей мы делали акцент на том, что вибрации этих полей порождают частицы. Если поле везде постоянно, а вибрации отсутствуют, то мы и не видим никаких частиц. Если бы нас беспокоили исключительно частицы, то фоновое значение поля — среднее значение, которое оно принимает, если вообразить, что все вибрации сглажены, — не играло бы никакой роли, так как оно не поддается непосредственному наблюдению. Однако фоновое значение поля можно измерить косвенно: в частности, оно способно нести энергию и, следовательно, влиять на кривизну пространства—времени.
Энергия, связанная с полем, может возникать разными способами. Обычно она связана с тем, что от одной точки пространства—времени к другой поле меняется; это энергия растяжения, соответствующая меняющимся значениям поля, подобно тому как существует энергия, связанная со скручиваниями и вибрациями резинового листа. Но в дополнение к этому поля способны обладать энергией даже тогда, когда они просто принимают постоянное значение, без каких-либо колебаний. Такой тип энергии, соответствующий самому значению поля, а не его изменениям от одной точки пространства к другой или от одного момента времени к другому, называется потенциальной энергией. Совершенно плоский резиновый лист обладает большей энергией тогда, когда он поднят высоко над землей, чем в том случае, когда он лежит на ее поверхности; мы знаем это, потому что можем извлечь эту энергию, взяв лист и бросив его вниз. Потенциальная энергия может быть преобразована в другие виды энергии.
В ситуации с резиновым листом (или с любым другим объектом, находящимся в гравитационном поле Земли) потенциальная энергия ведет себя достаточно прямолинейно: чем выше мы подняли объект, тем выше его потенциальная энергия. Однако с полями все намного сложнее. Если вы изобретаете новую теорию физики элементарных частиц, то вам необходимо задать зависимость потенциальной энергии от значения каждого поля. Базовых правил, которыми вы могли бы руководствоваться, не так много; просто каждому возможному значению каждого поля присваивается некоторое значение потенциальной энергии, и это часть формулировки теории. На рис. 14.6 показан пример потенциальной энергии какого-то гипотетического поля как функции значения поля.
Рис. 14.6. Изменение потенциальной энергии в зависимости от фонового значения какого-то гипотетического поля, например инфлатона. Поля стремятся к тому, чтобы скатываться в нижние точки энергетической кривой; на данном графике точки A, B и C представляют разные фазы, в которых может находиться вакуум. Самое низкое значение энергии в фазе B, так что это «истинный вакуум», тогда как A и C — это «ложные вакуумы»
Поле, у которого нет ничего, кроме потенциальной энергии (ни вибраций, ни движения, ни скручивания), просто существует, не изменяясь. Следовательно, его потенциальная энергия на кубический сантиметр остается постоянной, даже если Вселенная расширяется. Мы понимаем, что это значит: это энергия вакуума. (Точнее, это один из многих возможных вкладов в полную энергию вакуума.) Поле можно представлять себе как мяч, катящийся вниз по склону холма; он стремится к тому, чтобы остановиться в покое во впадине между холмами, где значение энергии ниже всего, — по крайней мере, ниже, чем любое другое соседнее значение. Разумеется, возможны и другие значения поля, которым соответствует еще более низкая энергия, но эти, более глубокие «впадины» разделены «холмами». На рис. 14.6 поле может счастливо жить при любом значении: A, B или C, но только в точке B энергия на самом деле минимальна. Значения A и C известны как «ложные вакуумы», и они кажутся состояниями с самой низкой энергией лишь тогда, когда для сравнения вы берете только соседние значения. «Истинный вакуум», где энергия на самом деле меньше всего, — это B. (Для физика «вакуум» — это не упражнение для укрепления брюшного пресса и даже не обязательно «пустое пространство». Это просто «состояние теории с самой низкой энергией». Посмотрите на кривую потенциальной энергии для какого-то поля: дно каждой впадины соответствует отдельному вакуумному состоянию.)
Гут совместил эти идеи в своем сценарии инфляционной Вселенной. Вообразите, что гипотетическое поле инфлатона пребывает в точке A, в одном из ложных вакуумов. Поле вносит существенный вклад в энергию вакуума, вследствие чего Вселенная ускоренно расширяется. Теперь нам остается лишь объяснить, как поле сумело переместиться из ложного вакуума A в истинный вакуум B, в котором мы сейчас живем, — как случился этот фазовый переход, превращающий энергию, запертую в поле, в обычную материю и излучение. Изначально Гут предположил, что это произошло, когда в ложном вакууме появились пузыри истинного вакуума, которые затем увеличились и, столкнувшись с другими пузырями, заполнили все пространство. Как выясняется, такой вариант, известный сегодня под названием старой инфляции, не работает; переход случается либо слишком быстро, и тогда инфляционного расширения не хватает, либо слишком медленно, и тогда инфляция никогда не заканчивается.
К счастью, вскоре после публикации первоначальной статьи Гута было сделано альтернативное предположение: представьте себе, что инфляция не застряла во «впадине» ложного вакуума, а начинается на возвышенном плато — длинном и почти плоском. Поле медленно катится вниз по плато, сохраняя почти постоянную энергию, и в конце концов падает с обрыва (фазовый переход). Это называется новой инфляцией, и в настоящее время это самая популярная среди космологов реализация идеи инфлатирующей Вселенной.[268]
Однако этим дело не ограничивается. Помимо решения проблем горизонта, плоскостности и монополей, к инфляции также прилагается совершенно неожиданный бонус: она способна объяснить истоки небольших флуктуаций плотности ранней Вселенной, которые впоследствии выросли в звезды и галактики.
Рис. 14.7. Кривая потенциальной энергии, соответствующая «новой инфляции». Поле никогда не застревает во впадине, а просто очень медленно катится вниз с возвышенного плато, прежде чем рухнуть в минимум. Плотность энергии в течение этой фазы не постоянна, но близка к тому
Механизм прост и неизбежен: квантовые флуктуации. Инфляция старается изо всех сил, для того чтобы сделать Вселенную как можно более однородной, но ей не преодолеть фундаментальный предел, определяемый квантовой механикой. Конфигурация не может стать слишком однородной, иначе мы нарушим принцип неопределенности Гейзенберга, описав состояние Вселенной слишком точно. Неизбежная квантовая нечеткость в плотности энергии от места к месту во время инфляции оставляет свой отпечаток на плотности материи и излучения, в которые инфляция преобразуется, а это можно перевести в очень точные и конкретные предсказания того, какие типы возмущений плотности мы должны увидеть в ранней Вселенной. Это те самые начальные возмущения, приводящие к температурным флуктуациям микроволнового фонового излучения и вырастающие в конечном итоге в звезды, галактики и кластеры. Пока предсказанные инфляцией типы возмущений прекрасно согласуются с данными наблюдений.[269] Дух захватывает, когда смотришь на небо, на все эти галактики, рассыпанные по пространству, и понимаешь, что все они зародились в квантовых флуктуациях, когда Вселенной была всего лишь доля секунды от роду.
Вечная инфляция
После того как инфляция была предложена, космологи рьяно взялись за изучение ее свойств в самых разных моделях. В ходе этих исследований российско-американские физики Александр Виленкин и Андрей Линде заметили кое-что интересное: стоит инфляции начаться, и она, судя по всему, никогда не останавливается.[270]
Для того чтобы понять это, проще всего на самом деле вернуться к идее старой инфляции, хотя данное явление так же характерно и для новой инфляции. В старой инфляции инфляционное поле застряло в ложном вакууме, а не катится медленно по склону холма. Поскольку больше в пространстве ничего нет, Вселенная во время инфляции принимает форму пространства де Ситтера с очень высокой плотностью энергии. Главный фокус в том, как выбраться из этой фазы — как остановить инфляцию и заставить пространство де Ситтера превратиться в горячую расширяющуюся Вселенную традиционной модели Большого взрыва. Нам нужно каким-то образом преобразовать энергию, хранящуюся в состоянии ложного вакуума инфляционного поля, в обычную материю и излучение.
Поле, застрявшее в ложном вакууме, хочет распасться в истинный вакуум, обладающий более низкой энергией. Но оно не делает это одномоментно; ложный вакуум распадается посредством формирования пузырей, точно так же, как жидкая вода кипит, превращаясь в водяной пар. Через случайные интервалы времени в ложном вакууме появляются небольшие пузырьки истинного вакуума, представляющие собой квантовые флуктуации. Каждый пузырь растет, и пространство внутри него расширяется. Однако пространство снаружи пузыря расширяется еще быстрее, так как там все еще доминирует высокоэнергетический ложный вакуум.
И мы наблюдаем состязание: пузыри истинного вакуума появляются и растут, но пространство между ними также растет, расталкивая сами пузыри. Что победит? Все зависит от того, как быстро пузыри создаются. Если это происходит достаточно быстро, то все пузыри сталкиваются между собой и энергия ложного вакуума преобразуется в материю и излучение. Однако мы не хотим, чтобы пузыри формировались слишком быстро, — ведь в этом случае Вселенная не успеет расшириться настолько, чтобы справиться с космологическими загадками.
К несчастью для сценария старой инфляции, подходящего компромисса здесь не существует. Если мы настаиваем, что инфляция решает наши космологические загадки, то выясняется, что пузыри при этом формируются так редко, что заполнить все пространство им не удастся никогда. Отдельные пузыри могут сталкиваться — исключительно по стечению обстоятельств; но все множество пузырей не сможет расшириться и врезаться друг в друга достаточно быстро, чтобы превратить весь ложный вакуум в истинный вакуум. Между пузырями всегда будет оставаться пространство, застрявшее в ложном вакууме и расширяющееся с необычайно высокой скоростью. И хотя пузыри продолжат формироваться, общий объем ложного вакуума продолжит увеличиваться, так как пространство расширяется быстрее, чем создаются пузыри.
В результате получается совершеннейший сумбур: хаотичное фрактальное распределение пузырей истинного вакуума, окруженное невероятно быстро расширяющимися областями ложного вакуума. Это совершенно не похоже на однородную, плотную раннюю Вселенную, которая нам хорошо знакома, поэтому идея старой инфляции была отправлена на свалку, как только подоспела новая инфляция.
Однако и здесь есть лазейка: а что, если наша наблюдаемая Вселенная содержится внутри одного пузыря? Тогда то, что пространство за пределами пузыря очень неоднородное, с фрагментами ложного вакуума и кусками истинного вакуума, не играет никакой роли — в нашем пузыре все выглядит однородным, и мы не в состоянии увидеть, что происходит снаружи, просто потому что ранняя Вселенная непрозрачна.
Существует веская причина, почему Гут не рассматривал такую возможность, когда впервые заговорил о старой инфляции. Если начать с простейших примеров пузыря истинного вакуума, появляющегося внутри ложного вакуума, то станет понятно, что внутренность такого пузыря составляют не материя и излучение — он абсолютно пуст. Следовательно, это не переход от пространства де Ситтера с высокой энергией вакуума к традиционной космологии Большого взрыва; это переход прямо к пустому пространству, имеющему форму пространства де Ситтера с более низким значением энергии вакуума (если энергия истинного вакуума положительная). И это не та Вселенная, в которой мы живем.
Лишь намного позже космологи осознали, что этот вывод немного скоропалителен. Действительно, существует способ «заново нагреть» внутренность пузыря истинного вакуума, для того чтобы создать условия модели Большого взрыва: реализовать эпизод новой инфляции внутри пузыря. Вообразим, что поле инфлатона внутри пузыря не достигает сразу же самой низкой точки своего потенциала, соответствующей истинному вакууму; вместо этого оно приземляется на промежуточное плато, с которого затем медленно скатывается в минимум. В этом случае фаза новой инфляции может происходить в каждом пузыре; плотность потенциальной энергии инфлатона, пока он находится на плато, позднее может преобразоваться в материю и излучение, и в результате мы получим совершенно правдоподобную Вселенную.[271]
Рис. 14.8. Распад пространства де Ситтера, соответствующего ложному вакууму, на пузыри истинного вакуума в старой инфляции. Никогда не происходит так, чтобы все пузыри столкнулись и заполнили все пространство, так как объем пространства в фазе ложного вакуума увеличивается быстрее. В действительности инфляция никогда не останавливается
Итак, старая инфляция, стоит ей начаться, никогда не заканчивается. Могут возникать пузыри истинного вакуума, похожие на нашу Вселенную, но область ложного вакуума снаружи не прекратит расти. Будет появляться все больше и больше пузырей, и процесс никогда не прервется. Это идея «вечной инфляции». Так происходит не в каждой инфляционной модели; наличие или отсутствие подобного поведения зависит от характеристик инфлатона и его потенциала.[272] Но необходимости проводить тонкую подстройку теории, для того чтобы получить вечную инфляцию, нет; она происходит в значительной части инфляционных моделей.
Мультиленная
Про вечную инфляцию можно говорить еще долго, но давайте сфокусируемся на одном ее следствии: хотя Вселенная, которую мы видим, на больших масштабах выглядит очень однородной, на еще больших (ненаблюдаемых) масштабах она далека от однородности. Крупномасштабное единообразие нашей наблюдаемой Вселенной иногда склоняет космологов к предположению о том, что Вселенная должна бесконечно продолжаться в том же духе во всех направлениях. Однако это всегда было лишь предположением, упрощающим нашу жизнь, а не результатом скрупулезно выверенной цепочки доказательств. Сценарий вечной инфляции предсказывает, что Вселенная не сохраняет однородность на всем своем протяжении; очень далеко за пределами нашего наблюдаемого горизонта картина в конце концов кардинально меняется. Несомненно, где-то там, далеко, инфляция все еще продолжается. Такой сценарий кажется нам сейчас довольно умозрительным, но важно помнить, что Вселенная на ультрабольших масштабах, скорее всего, очень сильно отличается от крохотного участка Вселенной, к которому у нас есть непосредственный доступ.
Данная ситуация привела к появлению нового словаря и ошибочному употреблению части старого. Каждый пузырь истинного вакуума, если все организовано правильно, приближенно напоминает нашу наблюдаемую Вселенную: потенциальная энергия инфлатона превращается в обычную материю и излучение, и мы обнаруживаем горячее, плотное, однородное, расширяющееся пространство. Наблюдатель, проживающий внутри одного пузыря, не видит никакие другие пузыри (если только они не сталкиваются) — в ранние времена его собственного пузыря он обнаруживает условия, схожие с Большим взрывом. Эта картина вообще-то представляет простейший пример Мультиленной — каждый пузырь, эволюционируя отдельно от остальных, сам по себе эволюционирует как Вселенная.
Очевидно, что здесь мы достаточно вольно обращаемся со словом «Вселенная». Если бы мы были осторожнее, то использовали бы его для обозначения всего сущего, независимо от того, способны мы это увидеть или нет (и иногда мы так и делаем, чтобы вам жизнь не казалась слишком простой). Но большая часть космологов злоупотребляет терминологией уже так давно, что если мы планируем общаться с другими учеными, нам следует научиться говорить на их языке. Мы слышим заявления вроде «нашей Вселенной четырнадцать миллиардов лет» настолько часто, что нам просто не хочется возвращаться к истокам и поправлять их, добавляя «по крайней мере, наблюдаемой части нашей Вселенной». Однако вместо этого люди просто обозначают словом «Вселенная» участок пространства—времени, напоминающий нашу наблюдаемую Вселенную, который зародился в горячем, плотном состоянии и расширился из него. Алан Гут предложил термин «карманные Вселенные» (pocket universes), чуть более точно отражающий суть идеи.
Таким образом, Мультиленная — это просто набор карманных Вселенных (областей истинного вакуума, расширяющихся и охлаждающихся после эффектного рождения) и фоновое инфлатирующее пространство—время, в которое они заключены. Если задуматься, это довольно-таки приземленная концепция идеи Мультиленной. Всего лишь множество различных областей пространства, которые все эволюционируют аналогично нашей наблюдаемой Вселенной.
В последнее время большое внимание привлекает интересное свойство Мультиленной такого типа: во всех этих карманных Вселенных локальные законы физики могут быть совершенно разными. На графике потенциальной энергии инфлатона на рис. 14.6 мы показали три разных состояния вакуума: A, B, C. Но совершенно не обязательно мы должны ограничиваться этим. Как мы вскользь упомянули в главе 12, теория струн, судя по всему, предсказывает существование огромного количества вакуумов — как минимум 10500, а может быть, еще больше. Каждое из этих состояний представляет собой отдельную фазу, в которой может пребывать пространство—время. Это означает разные типы частиц, с разными массами и взаимодействиями — по сути, совершенно новые законы физики в каждой Вселенной. И снова мы допускаем определенные терминологические вольности, ведь базовые законы (теория струн или что угодно еще) остаются теми же; тем не менее они проявляют себя разными способами, так же как вода может быть твердой, жидкой или газообразной. Сегодня ученые, занимающиеся исследованием теории струн, используют такой термин, как «ландшафт» возможных вакуумных состояний.[273]
Однако одно дело, когда ваша теория допускает множество различных вакуумных состояний, каждое с собственными законами физики, и совсем другое — заявлять, что все эти разнообразные состояния на самом деле существуют где-то в Мультиленной. Здесь в игру вступает вечная инфляция. Мы рассказали историю, в которой инфляция зарождается в состоянии ложного вакуума, а заканчивается (в каждой карманной Вселенной), эволюционируя в истинный вакуум, — либо путем образования пузырей, либо медленно скатываясь с холма вниз. Но если инфляция продолжается вечно, то ничто не запрещает ей эволюционировать в разные состояния вакуума в разных карманных Вселенных; и действительно, именно этого от нее и можно ожидать. Поэтому вечная инфляция предлагает способ взять все эти возможные Вселенные и сделать их реальными.
Такой сценарий — если он верен — приводит к важным следствиям. Самое очевидное из них то, что если вы лелеяли надежду научиться на основе Теории Всего Сущего уникальным образом предсказывать свойства наблюдаемых нами физических объектов и явлений (массу нейтрино, заряд электрона и т. д.), то с этими мечтами можно распрощаться. Локальные проявления законов физики от Вселенной к Вселенной будут очень сильно разниться. Возможно, вы также надеетесь на возможность каких-то статистических предсказаний, основанных на антропном принципе: «шестьдесят три процента наблюдателей в Мультиленной обнаружат три семейства фермионов» или что-то в этом роде. И многие ученые упорно пытаются получить подобные предсказания. Но нет никакой ясности относительно того, возможно ли это вообще, особенно если учесть, что количество наблюдателей, воспринимающих определенные свойства своего окружения, во многих случаях становится бесконечно большим — ведь инфляция во Вселенной продолжается бесконечно.
В этой книге мы очень интересуемся Мультиленной, но нам не настолько интересны детали ландшафта множества различных вакуумов или попытки выковать из антропного принципа набор практичных предсказаний. Наша проблема — низкая энтропия наблюдаемой Вселенной вскоре после зарождения — настолько ужасающа и драматична, что не стоит и надеяться решить ее с помощью антропного принципа; жизнь, определенно, могла бы существовать и во Вселенной с намного более высокой энтропией. Нам требуется нечто лучшее, и все же идея Мультиленной кажется шагом в правильном направлении. Как минимум касательно Вселенной она предполагает, что доступное нашему взору может оказаться далеко не полной картиной мира.
Чего хорошего в инфляции?
Давайте соберем все в одну кучу. История об инфляции, которую космологи придумали для себя,[274] звучит примерно так:
Нам неизвестно, какими были условия в ранней Вселенной сразу после ее рождения. Предположим, что она была плотная и скученная, но необязательно однородная; то тут, то там могли наблюдаться сильные флуктуации. Среди них могли быть черные дыры, осциллирующие поля и даже довольно пустые участки. Теперь представим себе, что по крайней мере одна небольшая область пространства во всей этой неразберихе относительно спокойна, а плотность энергии в ней определяется в основном темной суперэнергией поля инфлатона. Пока остальная часть пространства продолжает жить хаотично, внутри этой конкретной области начинается инфляция; ее объем увеличивается в невообразимое число раз, а любые ранее существовавшие возмущения начисто стираются благодаря инфляционному растяжению. В конце концов эта область эволюционирует в то, что выглядит в точности как наша Вселенная, как ее описывает стандартная модель Большого взрыва, и это никак не связано с тем, что происходит в оставшейся части изначально флуктуирующего первичного бульона. Следовательно, в данном сценарии нам не требуется никакой высокочувствительной, неестественно тонкой подстройки начальных условий, для того чтобы получить пространственно плоскую и однородную на больших расстояниях Вселенную; она гарантированно появляется из типовых, случайным образом флуктуирующих начальных условий.
Обратите внимание на то, что цель здесь — объяснить, почему Вселенная, подобная той, в которой мы обнаруживаем себя сегодня, может естественным образом зародиться в результате динамических процессов в ранней Вселенной. Инфляция рассматривается исключительно в рамках объяснения каких-то явно тонко подстроенных свойств нашей Вселенной в ранние времена; если же вы решите, что раннюю Вселенную следует принимать такой, какая она есть, и что нет никакого смысла в том, чтобы «объяснять» ее, то инфляция ничем вам помочь не сможет.
Работает ли это? Действительно ли инфляция объясняет, почему наши, казалось бы, совершенно неестественные начальные условия в действительности вполне вероятны? Я утверждаю, что инфляция сама по себе не дает ответа на эти вопросы; она может быть частью полной истории, но если мы хотим, чтобы наши слова звучали убедительно, мы дополнительно должны предоставить какие-то идеи относительно того, что происходило до инфляции. Это оставляет нас (то есть меня) в меньшинстве среди современных космологов, хотя и не в полном одиночестве;[275] большинство ученых, работающих в данной области, уверены, что инфляция действует как по писаному, избавляя нас от проблем тонкой настройки, от которых страдает стандартная модель Большого взрыва. Вы должны суметь принять собственное решение, не забывая, однако, что в конечном итоге решение остается за Природой.
В предыдущей главе, когда мы обсуждали эволюцию энтропии в нашей Вселенной, мы ввели в обращение понятие «сопутствующего объема» — фрагмента Вселенной, который мы в состоянии наблюдать в настоящее время и который рассматривается как эволюционирующая во времени физическая система. Вполне допустимо приближенно считать наш сопутствующий объем замкнутой системой: несмотря на то что, строго говоря, он не изолирован, мы полагаем, что оставшаяся часть Вселенной не оказывает никакого значимого влияния на происходящее в пределах нашего объема. Это верно и в инфляционном сценарии. Наш объем обнаруживает себя в конфигурации, где он очень мал и где властвует темная суперэнергия; другие части Вселенной могут выглядеть кардинально иным образом, но кого это волнует?
Мы ранее уже формулировали загадку ранней Вселенной в терминах энтропии: сегодня энтропия нашего сопутствующего объема составляет около 10101, но в ранние времена ее значение было примерно 1088, а максимальное значение энтропии для нас — 10120. Это означает, что в ранней Вселенной значение энтропии было невероятно маленьким по сравнению с текущим состоянием Вселенной. Почему? Если состояние Вселенной выбирается случайным образом среди всех возможных состояний, то крайне маловероятно, что результатом такого выбора будет настолько низкоэнтропийная конфигурация, так что, очевидно, нам известна далеко не вся история.
Назначение инфляционной идеи — предоставить недостающие фрагменты. Небольшой участок может из бешено осциллирующих начальных условий, которые явно или неявно иногда ошибочно описывают как «высокоэнтропийные», естественным образом эволюционировать в область с энтропией 1088, выглядящую как наша Вселенная. Мы уже много раз обсуждали это в нашей книге и знаем, что истинно высокоэнтропийная конфигурация — это не бешено осциллирующий высокоэнергетический беспорядок, это его прямая противоположность, обширное и тихое пустое пространство. Как и в случае ранней Вселенной в традиционной истории с Большим взрывом, условия, необходимые для запуска инфляции, совершенно не похожи на те, которые мы бы получили, если бы вслепую вытаскивали их из шляпы фокусника.
На самом деле все еще хуже. Давайте сфокусируемся на крохотном участке пространства, где доминирует темная суперэнергия и в котором начинается инфляция. Какова его энтропия? Это сложный вопрос, и причина, почему мы не можем дать на него точный ответ, все та же — мы слишком мало знаем об энтропии в присутствии гравитации, и особенно в высокоэнергетическом режиме, необходимом для инфляции. Но в наших силах делать правдоподобные предположения. В предыдущей главе мы говорили о том, что в любую заданную область расширяющейся Вселенной можно «уместить» лишь ограниченное число состояний, по крайней мере если для их описания используются обычные предположения квантовой теории поля (что подразумевается для инфляции). Состояния выглядят как вибрирующие квантовые поля, а длина волны вибраций должна быть меньше размера рассматриваемой области, но больше планковской длины. Это означает, что существует максимальное число возможных состояний, которые могут выглядеть как небольшой участок, готовый к инфляции.
Числовой ответ зависит от конкретного способа запуска инфляции, и в частности от энергии вакуума во время инфляции. Однако различия между возможными моделями не слишком значительны, поэтому мы можем выбрать один пример и придерживаться его. Предположим, что энергетический масштаб во время инфляции составлял 1 % от планковского масштаба; это довольно много, но все же достаточно мало, для того чтобы мы обезопасили себя от сложностей, которые влечет за собой квантовая гравитация. В этом случае предполагаемое значение энтропии нашего сопутствующего объема в начале инфляции было равно:
Sинфляции ≈ 1012.
Это невероятно маленькое значение по сравнению и с 10120 — такой энтропия вполне может быть, — и с 1088 — а такой энтропия станет совсем скоро. Оно отражает тот факт, что для того, чтобы инфляция началась, каждая степень свободы, которая будет описывать нашу текущую Вселенную, должна была быть тщательно упакована в чрезвычайно однородный маленький участок пространства.
Таким образом, секрет инфляции раскрыт: объяснение, почему наша наблюдаемая Вселенная пребывала в таком очевидно низкоэнтропийном, тонко подстроенном раннем состоянии, базируется в этом сценарии на предположении о том, что ему предшествовало еще более низкоэнтропийное состояние. Это не кажется чем-то удивительным, если мы доверяем второму закону термодинамики и ожидаем, что энтропия со временем будет возрастать, но и ответа на главный вопрос не дает. На самом деле все еще удивительно, что наш сопутствующий объем Вселенной оказался в низкоэнтропийной конфигурации того типа, который необходим для начала инфляции. Невозможно решить проблему тонкой подстройки, апеллируя к еще более тонкой подстройке.
Возвращаясь к нашему сопутствующему объему
Давайте попробуем добраться до сути дела; здесь мы уже отступаем от общепринятой точки зрения, и нам надлежит соблюдать крайнюю осторожность.
Мы делаем два критически важных предположения относительно эволюции наблюдаемой Вселенной — нашего сопутствующего объема пространства и всего, что внутри него имеется. Во-первых, мы предполагаем, что наблюдаемая Вселенная, по сути, автономна, то есть она эволюционирует как замкнутая система, свободная от влияния извне. Инфляция не нарушает данное предположение; как только процесс инфляции запускается, наш сопутствующий объем стремительно приобретает вид однородной конфигурации, а эта конфигурация эволюционирует независимо от остальной Вселенной. Данное предположение, очевидно, может нарушаться до начала инфляции и играть определенную роль в формировании начальных условий. Однако инфляция сама по себе в попытках объяснить то, что в настоящее время предстает нашему взору, не пользуется преимуществом никаких гипотетических внешних воздействий.
Во-вторых, предположим, что динамика нашей наблюдаемой Вселенной обратима — любые изменения сохраняют информацию. Это кажущееся безобидным заявление приводит к важным следствиям. Существует пространство состояний, фиксированное раз и навсегда (в частности, оно остается одним и тем же как в ранние времена, так и в поздние), и эволюция в этом пространстве переводит разные начальные состояния в разные конечные состояния (за одно и то же время). Ранняя Вселенная очень не похожа на позднюю: она меньше, плотнее, быстрее расширяется и т. д. Но (в предположении об обратимой динамике) это не означает, что изменилось пространство состояний; изменился лишь конкретный тип состояния, в котором Вселенная находится.
Ранняя Вселенная (повторяя очевидное) — это та же самая физическая система, что и поздняя Вселенная, только в совершенно иной конфигурации. А энтропия любого заданного микросостояния этой системы отражает число других микросостояний, аналогичных данному с макроскопической точки зрения. Если бы мы случайным образом выбирали конфигурацию физической системы, которую мы называем наблюдаемой Вселенной, с подавляющей вероятностью это оказалось бы состояние с очень высокой энтропией, то есть близкое к пустому пространству.[276]
Честно говоря, люди, даже профессиональные космологи, обычно так не думают. Мы склонны полагать, что ранняя Вселенная — это небольшой плотный участок, поэтому, задумываясь о состояниях, в которых она могла пребывать, мы часто ограничиваемся лишь небольшими плотными конфигурациями, достаточно однородными и удобными, для того чтобы к ним можно было применять правила квантовой теории поля. Однако для таких предположений нет совершенно никаких оснований, по крайней мере в рамках динамики Вселенной. Размышляя о возможных состояниях, в которых могла находиться ранняя Вселенная, мы должны включать в рассмотрение также и неизвестные состояния, не входящие в сферу действия квантовой теории поля. Если уж на то пошло, нам следует рассматривать все возможные состояния текущей Вселенной, ведь это всего лишь другие конфигурации той же самой системы.
Размер Вселенной не сохраняется, он эволюционирует и изменяется. Когда мы рассматриваем статистическую механику молекул газа в контейнере, вполне допустимо считать количество молекул фиксированным, так как это отражает реальность глубинной динамики. Однако в теории, включающей гравитацию, «размер Вселенной» не может быть фиксированным. Так что бессмысленно — снова, отталкиваясь от известных законов физики, без оглядки на какие бы то ни было новые принципы за их пределами — с самого начала предполагать, что ранняя Вселенная обязательно маленькая и плотная. Это должно быть объяснено.
Все это весьма проблематично в рамках традиционного обоснования, которое мы подводим под сценарий инфляционной Вселенной. Согласно предыдущей истории, мы признаем, что не знаем, как выглядела ранняя Вселенная, но подозреваем, что она испытывала большие флуктуации. (В современной Вселенной, разумеется, подобных флуктуаций нет, так что одно это уже требует объяснения.) Среди этих флуктуаций время от времени появляется область, в которой доминирует темная суперэнергия, и далее все следует согласно традиционной инфляционной истории. В конце концов, насколько сложно случайно профлуктуировать в подходящие для начала инфляции условия?
Ответ таков: да, это невероятно сложно. Если поистине случайно выбирать конфигурацию для степеней свободы в пределах этой области, то с подавляющей вероятностью результатом выбора станет состояние с высокой энтропией: большая пустая Вселенная.[277] На самом деле, просто сравнивая энтропии, можно заключить, что намного проще получить нашу текущую Вселенную, с сотней миллиардов галактик и всем прочим, чем область, готовую к инфляции. И если мы не выбираем конфигурации этих степеней свободы случайным образом, то что же, вообще говоря, мы делаем? Это выходит за рамки традиционной инфляционной истории.
Подобные проблемы характерны не только для инфляционной идеи. Они досаждают любым возможным сценариям, с помощью которых ученые когда-либо пытались предоставить динамическое объяснение очевидно тонкой подстройке нашей ранней Вселенной, не вступая в то же время в противоречия с нашими двумя предположениями (что наш сопутствующий объем — это замкнутая система и что его динамика обратима). Проблема заключается в том, что энтропия ранней Вселенной была низкой, а это означает, что вариантов того, как могла бы выглядеть Вселенная, относительно немного. При этом, несмотря на то что информация сохраняется, нет такого динамического механизма, который мог бы взять очень большое число состояний и заставить их эволюционировать в меньшее число состояний. Если бы что-то подобное существовало, нарушить второе начало термодинамики не составляло бы труда.
Подготавливая почву
В предыдущем обсуждении я намеренно акцентировал внимание на скелетах, спрятанных в шкафу сценария инфляционной Вселенной, — вы найдете множество других книг, в которых упор будет делаться на аргументы в пользу данной идеи.[278] Однако давайте начистоту: проблема на самом деле не в инфляции, а в том, как эта теория преподносится заинтересованной аудитории. Мы часто слышим, что инфляция устраняет настоятельную потребность в построении теории начальных условий, так как инфляция начинается при относительно типичных обстоятельствах, а стоит ей начаться, как все наши проблемы разом решаются.
Истина почти противоположна: имеется множество доводов в пользу инфляции, но все же она делает потребность в теории начальных условий еще более насущной. Надеюсь, мне удалось донести до вас мысль, что ни инфляция, ни любой другой механизм не могут сами по себе объяснить нашу низкоэнтропийную раннюю Вселенную при условии истинности предположений об обратимости и автономной эволюции. Нельзя исключать, конечно, что от обратимости придется уйти; возможно, фундаментальные законы физики нарушают обратимость на фундаментальном уровне. Хотя такое можно себе представить, я приведу аргументы, что слишком сложно привязать подобную идею к тому, что мы фактически наблюдаем в мире вокруг себя.
Менее радикальной стратегией было бы выйти за пределы предположения об автономной эволюции. Мы с самого начала понимали, что считать наш сопутствующий объем замкнутой системой — в лучшем случае приближение. В настоящее время — да и в любой момент в истории Вселенной, для которого в нашем распоряжении есть реальные эмпирические данные, — это кажется на редкость хорошим приближением. Однако нет сомнений в том, что оно нарушается в самом начале жизни Вселенной. Инфляция может играть решающую роль в объяснении окружающей нас Вселенной, но только в том случае, если мы сумеем избавиться от идеи, что «мы просто случайным образом профлуктуировали в нее», и придумаем причину, почему условия, необходимые для инфляции, вообще появились.
Другими словами, самым очевидным решением нашей головоломки будет забыть о стремлении объяснить неестественную раннюю Вселенную исключительно в терминах автономной эволюции нашего сопутствующего объема и вместо этого попытаться встроить нашу наблюдаемую Вселенную в глобальную картину. Это снова возвращает нас к идее Мультиленной — более крупной структуре, в которой Вселенная, окружающая нас, является лишь крохотной частью. Если что-то вроде этого является правдой, мы, по крайней мере, сможем всерьез рассмотреть идею о том, что эволюция Мультиленной естественным образом порождает условия, при которых может начаться инфляция, а после этого все продолжается, как описано выше.
Итак, теперь нас интересует не то, как должна выглядеть физическая система, формирующая нашу наблюдаемую Вселенную, а то, как должна выглядеть Мультиленная и действительно ли она естественным образом порождает области, похожие на Вселенную. В идеальном случае нам бы хотелось, чтобы это происходило без необходимости вручную подключать асимметрию времени на каком-либо шаге пути. Помимо объяснения, как получить правильные условия для запуска инфляции, мы также хотим указать, почему нет ничего противоестественного в существовании огромной полосы пространства—времени (нашей наблюдаемой Вселенной), на одном конце которой существуют описанные условия, а на другом — пустое пространство. Эта программа далека до завершения, хотя у нас уже есть определенные наработки. Сейчас мы бродим по территории гипотетических рассуждений, но если нам удастся не потерять головы, то мы сможем успешно завершить это путешествие, не попав в пасть к дракону.