Смотри на мир так, будто время исчезло, и тогда все кривое станет для тебя прямым.
В отличие от многих авторов я не мучился с выбором названия для этой книги.[303] Как только мне в голову пришла Вечность (From Eternity to Here), все сомнения были отброшены. Коннотации идеальны: с одной стороны, классический фильм (по мотивам классического романа) с той культовой сценой, в которой неукротимые волны Тихого океана разбиваются о берег рядом с Деборой Керр и Бертом Ланкастером, слившимися в страстном объятии;[304] с другой — космологическое великолепие, заключенное в слове вечность.
Однако в этом названии кроется намного больше, чем предполагают подобные поверхностные сравнения. Моя книга не только о «вечности»; она также о настоящем. Загадка стрелы времени начинается не с гигантских телескопов или мощных ускорителей частиц; она здесь, на нашей кухне, проявляется каждый раз, когда мы разбиваем яйцо, или вливаем молоко в кофе, или кладем кубик льда в теплую воду, или проливаем вино на ковер, или позволяем ароматам наполнять комнаты, или тасуем новую колоду карт, или превращаем вкусный ужин в биологическую энергию, или переживаем событие, оставляющее долговременные воспоминания, или даем жизнь новому поколению. Все эти банальные явления демонстрируют фундаментальную необратимость, которая и является отличительным признаком стрелы времени.
Цепочка рассуждений, начавшаяся с попытки понять эту стрелу, неотвратимо привела нас к космологии — к вечности. Больцман предоставил элегантное и привлекательное макроскопическое объяснение энтропии в терминах статистической механики. Но это объяснение не способно дать толкование второму началу термодинамики, если только мы не призываем на помощь граничное условие — почему вообще энтропия когда-то была низкой? Энтропия неразбитого яйца намного ниже, чем могла бы быть, но такие яйца, тем не менее, встречаются повсеместно, потому что общая энтропия Вселенной намного меньше, чем могла бы быть. А причина этого — то, что раньше она была еще ниже, и так вплоть до самого зарождения всего того, что мы в состоянии наблюдать. Происходящее здесь, на нашей кухне, тесно связано с происходящим в вечности, при зарождении Вселенной.
Такие личности, как Галилей, Ньютон и Эйнштейн, знамениты тем, что предлагали законы физики, которые до этого не принимались во внимание. Они работали в разное время, но их достижения объединяет общая тема: все они иллюстрируют универсальность Природы. То, что происходит здесь, происходит и в любом другом месте, — или, как сформулировал Ричард Фейнман, «вся Вселенная в бокале вина, нужно лишь внимательно присмотреться».[305] Галилей показал, что небеса беспорядочны и постоянно видоизменяются, точно так же, как условия здесь, на земле. Ньютон догадался, что те же самые законы гравитации, которые отвечают за падающие яблоки, могут объяснить и движение планет. А Эйнштейн понял, что пространство и время — это составные части одного унифицированного пространства—времени и что кривизна пространства—времени лежит в основе движения Солнечной системы и рождения Вселенной.
Точно так же правила, управляющие энтропией и временем, одинаковы как для нашей повседневной жизни, так и для самых далеких уголков Мультиленной. Нам пока неизвестны все ответы, но мы стоим на пороге огромного прогресса в чрезвычайно важных вопросах.
Каков ответ?
На протяжении всей этой книги мы старательно исследовали все, что знаем о работе времени: начав с гладкого детерминистского контекста относительности и пространства—времени, мы продолжили с беспорядочным вероятностным миром статистической механики. Наконец, мы добрались до космологии и увидели, как лучшие теории Вселенной терпят неудачу, сталкиваясь с самым очевидным свойством Вселенной: отличием между энтропией в ранние и поздние годы. Затем, после того как целых четырнадцать глав мы собирали и формулировали проблемы, мы посвятили всего лишь одну главу возможным решениям и также потерпели неудачу в попытках обнаружить бескомпромиссные подтверждения истинности любого из них.
Возможно, вы даже чувствуете некоторое разочарование, но это было сделано намеренно. Понимание невероятно важного и запутанного свойства окружающего мира — это многоступенчатый процесс. Сначала мы не имеем никакого представления о том, что происходит; затем понимаем, как сформулировать проблему, но у нас совсем нет идей относительно возможных вариантов решения; потом мы располагаем несколькими допустимыми ответами, но не знаем, какой из них верен (и верен ли хоть один); и наконец, мы докапываемся до сути. Стрела времени находится между вторым и третьим этапами: мы можем очень четко сформулировать проблему, но у нас есть лишь несколько расплывчатых идей касательно возможного ответа.
В такой ситуации имеет смысл посвятить больше времени тому, чтобы разобраться в проблеме, а не увязать во множестве потенциальных решений. Пройдет сто лет, но почти все, о чем мы говорили в первых трех частях этой книги, так же будет иметь смысл. Теория относительности хорошо обоснована, так же как и квантовая механика, и каркас статистической механики. Мы уверены в своем понимании основ эволюции Вселенной, по крайней мере начиная с момента сразу после Большого взрыва и до сегодняшнего дня. Однако существующие в настоящее время идеи относительно квантовой гравитации, Мультиленной и того, что происходило в период Большого взрыва, все еще остаются на спекулятивном уровне. Какие-то из них могут вырасти в твердое понимание, но многие наверняка будут отброшены и забыты. В данный момент нам гораздо важнее получить общее представление о карте территории, чем ссориться из-за того, по какому маршруту ее лучше пройти.
Наша Вселенная — это не флуктуация на равновесном фоне, ведь в этом случае она бы выглядела совершенно иначе. И кажется маловероятным, что фундаментальные законы физики могут быть необратимыми на микроскопическом уровне, — и даже если могут, все равно очень сложно понять, как это способно объяснить эволюцию энтропии и сложность, которую мы наблюдаем в нашей Вселенной. Невозможно отрицать граничное условие, застрявшее в начале времен, но его постулирование скорее позволяет избегать неудобных вопросов, чем отвечает на них. Возможно, это все, чего нам когда-либо удастся добиться, но я все же подозреваю, что низкая энтропия ранней Вселенной — это ключ к пониманию чего-то более важного, а не просто упрямый факт, с которым только и остается что смириться.
У нас на руках остался один вариант: наша наблюдаемая Вселенная является частью намного более крупной структуры, Мультиленной. Помещая то, что доступно нашему взору, внутрь громадного ансамбля, мы получаем возможность дать разумное объяснение нашему, очевидно, тонко подстроенному началу, не навязывая никакой тонкой подстройки для всей Мультиленной в целом. Одного такого хода, разумеется, недостаточно; нам нужно продемонстрировать, почему в этом мире должен существовать постоянный градиент энтропии и почему этот градиент должен проявляться в форме Вселенной, подобной нашей, а не каким-то другим образом.
Мы обсудили специфическую модель, к которой я питаю особое расположение: Вселенную, большая часть которой представляет собой высокоэнтропийное пространство де Ситтера, но которая порождает автономные новорожденные Вселенные, не только позволяя энтропии увеличиваться до бесконечности, но и попутно создавая участки пространства—времени, аналогичные тому, что мы видим вокруг себя. Детали этой модели пока что по большей части относятся к области гипотез и базируются на предположениях, далеко выходящих за пределы того, что текущий уровень прогресса позволяет надежно описать (мягко говоря). И все же, по моему мнению, намного более важную роль играет общая парадигма, согласно которой энтропия увеличивается просто потому, что она способна увеличиваться вечно; для Вселенной не предусмотрено состояния равновесия. Такая схема естественным образом приводит к градиенту энтропии; кроме того, она демонстрирует естественную симметрию времени относительно какого-то момента минимальной (хотя вовсе не обязательно «маленькой») энтропии. Было бы интересно исследовать, существуют ли другие способы реализовать эту общую программу.
Где-то на дальних подступах маячит один подход, который мы время от времени упоминали, но которому никогда не уделяли безраздельного внимания: идея о том, что «время» само по себе — это всего лишь приближение, периодически оказывающееся полезным (в том числе в нашей локальной Вселенной), но не несущее никакой фундаментальной значимости. Тем не менее такой вариант вполне допустим. Уроки, которые преподал нам голографический принцип, а также глобальное ощущение того, что базовые ингредиенты квантово-механической теории могут проявляться совсем иначе, не так, как мы привыкли видеть в классическом режиме, заставляют всерьез рассматривать возможность того, что время может быть стихийным явлением, а не неотъемлемой частью нашего окончательного описания мира.
Одна из причин, почему мы не рассматривали подробно в этой книге альтернативу «время — это всего лишь приближение», заключается в том, что мы мало что можем о ней сказать, по крайней мере в пределах имеющихся у нас знаний. Даже оставаясь в рамках наших невзыскательных стандартов, трудно представить, каким образом время могло появиться из более фундаментального описания. Однако есть и другая, более очевидная причина: даже если время — это всего лишь приближение, данное приближение кажется чрезвычайно качественным в той части Вселенной, которую мы способны наблюдать; к тому же именно оно содержит истоки проблемы стрелы времени. Определенно, можно вообразить, что классическое пространство—время как успешная концепция полностью теряет свою жизнеспособность в окрестности Большого взрыва. Тем не менее само по себе это ничего не говорит нам о том, почему в пределах нашего наблюдаемого объема условия на одном конце времени (который мы называем «прошлым») должны так радикально отличаться от условий на другом (в «будущем»). Если мы заявляем: «Время — это всего лишь приблизительное понятие, и, следовательно, энтропия должна вести себя именно таким вот образом в конфигурации, в которой правомерно говорить о времени», эта альтернатива создает впечатление скорее маневра уклонения, а не жизнеспособной стратегии. Но это, конечно же, свидетельствует больше о нашей неосведомленности, чем о чем-либо другом; есть все шансы на то, что окончательный ответ кроется где-то в этом направлении.
Эмпирический круг
Пионеры термодинамики — Карно, Клаузиус и другие — руководствовались в своих исследованиях практическими целями: помимо прочего, они стремились построить лучшие паровые двигатели. От их догадок мы перескочили прямехонько к грандиозным гипотезам о Вселенных, лежащих за пределами нашей собственной. Ключевой вопрос теперь: как нам вернуться обратно? Хорошо, пусть наша Вселенная обладает стрелой времени, потому что принадлежит Мультиленной с неограниченной энтропией, но нам-то как об этом узнать?
Ученые невероятно гордятся эмпирической природой того, чем они занимаются. Научные теории получают всеобщее признание не потому, что они логичны или красивы или позволяют достичь какой-то философской цели, нежно почитаемой тем или иным ученым мужем. Это неплохие причины для того, чтобы предложить теорию, но для того, чтобы быть одобренной, она должна соответствовать гораздо более высоким стандартам. В конце концов, научные теории обязаны соответствовать экспериментальным данным. Насколько бы неотразимой по своей природе ни была теория, если она не соответствует данным, это любопытная диковинка, а не достижение.
Однако критерий «соответствия экспериментальным данным» не так-то прост. Как минимум, данным могут отвечать множество различных теорий; к тому же очень многообещающая теория может не полностью соответствовать данным в своем текущем состоянии, несмотря на то что суть ее верна. Если копнуть еще глубже, то одни теории могут казаться идеально соответствующими данным, но все же заводить в концептуальный тупик или же вести к внутреннему противоречию, тогда как другие, несмотря на некоторые расхождения с данными, могут выглядеть весьма многообещающими в перспективе и в будущем превращаться в нечто гораздо более приемлемое. В конечном счете как бы много данных мы ни собрали, это всегда будет лишь крохотная доля всех возможных экспериментов. Так имеем ли мы право выбирать?
Реальность научной работы слишком сложна, чтобы ее можно было облечь в форму пары нехитрых девизов. Проблема, как отличать «науку» от «не науки», настолько каверзна, что для нее придумали отдельное название: «проблема демаркации». Научные философы вовсю веселятся, ведя бесконечные споры о том, как разрешить ее наилучшим образом.
Несмотря на то что цель научной теории — достичь соответствия с экспериментальными данными, худшей из возможных научных теорий будет та, которая соответствует всем возможным данным. Причина в том, что истинная цель все же — не просто обеспечить соответствие с тем, что мы видим во Вселенной, а объяснить, что мы видим. А сделать это можно, только если вы понимаете, почему вещи находятся в том конкретном порядке, в каком они находятся, а не в каком-то ином. Другими словами, ваша теория должна утверждать, что определенные вещи вообще никогда происходить не могут, — в противном случае она ничего особенного не говорит.
Эту идею особенно рьяно защищал Карл Поппер, утверждавший, что для научной теории важнее быть не «верифицируемой», а «фальсифицируемой».[306] Однако это не означает существования данных, противоречащих теории, — только то, что теория ясно делает предсказания, которые могли бы, в принципе, быть опровергнуты с помощью каких-то экспериментов. Теория должна быть объектом для нападок, иначе ее нельзя называть научной. Поппер имел в виду историческую теорию Карла Маркса и теорию психоанализа Зигмунда Фрейда. Эти влиятельные интеллектуальные построения, по его мнению, абсолютно не дотягивали до научного статуса, о котором с таким удовольствием вещали их сторонники. Поппер полагал, что все, что когда-либо происходило в мире, и любое поведение, демонстрируемое человеком, может быть «объяснено» с помощью теорий Маркса и Фрейда, — но вы никогда не сможете ткнуть пальцем в какое-нибудь наблюдаемое событие и сказать: «Ага! А вот это точно невозможно согласовать с этими теориями!». Как противопоставление он приводил теорию относительности Эйнштейна, которая для случайного человека с улицы звучит не менее заумно и непостижимо, но делает весьма определенные предсказания, которые (если бы эксперименты привели к другим результатам) вполне способны опровергнуть саму теорию.
Мультиленная — это не теория
В какое положение это ставит Мультиленную? Взять нас — мы утверждаем, что на практике применяем научные принципы, когда пытаемся «объяснить» наблюдаемую стрелу времени в нашей Вселенной, ссылаясь на бесконечное множество других Вселенных, которые мы даже не в состоянии наблюдать. Можно ли опровергнуть заявление о существовании других Вселенных? Неудивительно, что подобные гипотетические теоретизирования о не поддающихся наблюдению вещах оставляют неприятное впечатление у многих ученых. По их мнению, если вы не можете сделать конкретное предсказание, которое может быть опровергнуто экспериментально, то, чем бы вы ни занимались, — это не наука. В лучшем случае это философия, и, если уж на то пошло, не лучшего качества.
Однако истина, как это часто бывает, немного сложнее. Все эти разговоры о Мультиленных могут в итоге попросту завести нас в тупик. И столетие спустя наши потомки будут качать головами, вспоминая интеллектуальные усилия, впустую потраченные на попытки понять, что было до Большого взрыва, — точно так же, как мы удивляемся, зачем было тратить столько сил на алхимию или теорию теплорода. Но причиной этого будет не то, что современные космологи сошли с истинного научного пути, а то (если действительно так произойдет), что наша теория оказалась неверной.
Касательно роли не поддающихся наблюдению вещей в науке необходимо сделать акцент на двух моментах. Во-первых, неправильно считать целью науки исключительно систематизацию экспериментальных данных. Цель науки намного глубже: она заключается в том, чтобы понять поведение мира природы.[307] В начале XVII века Иоганн Кеплер предложил три закона движения планет, которые безошибочно объясняли громадные объемы астрономических данных, собранные его учителем Тихо Браге. Однако мы не понимали динамику планет по-настоящему до тех пор, пока Исаак Ньютон не продемонстрировал, что она может быть объяснена в терминах простого обратно-квадратичного закона гравитации. Аналогично, нам не нужно заглядывать дальше Большого взрыва, чтобы понять эволюцию нашей наблюдаемой Вселенной; необходимо только задать условия в ранние времена, и на этом все. Однако эта стратегия не дает никакого понимания, почему условия были именно такими, какими они были.
Схожую логику можно было бы применить, пытаясь опровергнуть необходимость в теории инфляции; все, что делает инфляция, — это берет то, что мы уже и так знаем о Вселенной (она плоская, однообразная и в ней нет монополей), и объясняет все в терминах простых базовых правил. Но зачем нам это? Мы могли бы просто принять вещи такими, какие они есть. Однако в результате нашего стремления достичь большего, по-настоящему понять раннюю Вселенную, а не просто согласиться с ее особенностями, мы обнаружили, что инфляция способна предоставить намного больше — теорию первоисточника и природы начальных возмущений, которые выросли в галактики и крупномасштабные структуры. Это главное преимущество подхода, в котором мы ищем понимание, а не просто удовлетворяемся соответствием с данными, — истинное понимание приводит к новым высотам, о которых мы раньше не задумывались и не ставили цели достичь. Если однажды мы поймем, почему у ранней Вселенной была низкая энтропия, то велика вероятность того, что лежащий в основе этого явления базовый механизм объяснит гораздо больше, чем один-единственный факт.
Второй момент еще важнее, несмотря на то что следующее утверждение звучит несколько банально: наука — это беспорядочная, запутанная штука. Базис науки — эмпирическое знание, и это навсегда останется правдой. Мы руководствуемся экспериментальными данными, а не исключительно мотивами. Но для того чтобы достичь уровня, на котором мы сможем руководствоваться данными, нам приходится пройти долгую дорогу, полную неэмпирических подсказок и предпочтений в построении моделей и сравнении их друг с другом. В этом нет ничего плохого. Главным критерием конечного продукта должно быть то, насколько хорошо он объясняет данные, но это совсем не означает, что каждый шаг на пути должен быть плодом близкого и детального контакта с экспериментом.
В частности, Мультиленная — это не теория. Если бы это было так, то было бы абсолютно допустимо критиковать ее на основании того, что придумать какие-то возможные экспериментальные проверки невероятно сложно. Правильнее думать о Мультиленной как о предсказании. Теория — такая, какая она есть, в ее текущем недоразвитом состоянии — это тесное единение принципов квантовой теории поля и нашего базового понимания того, как работает искривленное пространство—время. Имея эти знания в качестве начальных условий, мы не просто теоретизируем о том, что в жизни Вселенной мог быть ранний период супербыстрого ускорения; мы предсказываем, что инфляция должна происходить, если квантовое поле инфлатона с подходящими свойствами окажется в правильном состоянии. Точно так же, мы не говорим просто: «Круто было бы, если бы существовало бесконечное число различных Вселенных!» Нет, мы предсказываем, отталкиваясь от обоснованных экстраполяций теории гравитации и квантовой теории поля, что Мультиленная действительно должна существовать.
Предсказание о том, что мы живем в Мультиленной, пока, насколько можно судить, не поддается проверке. (Хотя кто знает? Ученым и раньше приходили в голову весьма остроумные идеи.) Однако суть не в этом. Мультиленная — это часть более крупной, более всеобъемлющей структуры. Вопрос должен ставиться не в форме: «Как нам проверить, что Мультиленная действительно существует?», а в форме: «Как нам проверить теории, предсказывающие, что Мультиленная должна существовать?». На сегодняшний день у нас нет понимания того, как с помощью этих теорий строить поддающиеся опровержению предсказания. Но нет причин полагать, что мы, в принципе, не способны это делать. Физикам-теоретикам, конечно, придется серьезно потрудиться, для того чтобы развить подобные идеи до состояния, в котором мы сможем формулировать проверяемые предсказания. Возможно, кому-то уже не терпится — в конце концов, почему эти предсказания с самого начала не раскладываются перед ним в готовом к употреблению виде? Но это его личные трудности, а не принципиальная философская позиция. Иногда на вынашивание и дозревание многообещающей научной идеи до того уровня, когда ее можно будет беспристрастно оценить со всех сторон, требуется довольно много времени.
Поиск смысла в абсурдной Вселенной
На протяжении всей своей истории человечество (вполне естественно) рассматривало Вселенную с человекоцентрической точки зрения. В том числе буквально — поставив себя в географический центр Вселенной (на полное искоренение попыток строить теории на базе этого предположения ушло довольно много времени и усилий). С тех пор как повсеместное одобрение заслужила гелиоцентрическая модель, ученые придерживаются принципа Коперника — «мы не занимаем какое-то особенное место во Вселенной», предостерегая самих себя от того, чтобы считать нас чем-то таким уж знаменательным.
Однако на более глубоком уровне наш антропоцентризм проявляет себя в форме убеждения, что человеческие существа имеют какое-то значение для Вселенной. Именно это чувство лежит в основе бытующего в определенных кругах убеждения, что теория естественного отбора Дарвина не позволяет объяснить эволюцию жизни на Земле. Побуждение думать, что мы имеем особое значение, может принимать форму как простой веры, что мы (или хотя бы часть из нас) избраны Богом, так и чего-то более расплывчатого, как, например, уверенность в том, что весь этот изумительный мир вокруг нас — просто случайность.
У разных людей может быть разное определение слова Бог, так же как и разные понятия о том, какова символическая цель человеческой жизни. Бог может принимать форму настолько абстрактной и трансцендентной концепции, что научные методы не в состоянии будут сказать о ней абсолютно ничего. Если Бог идентифицируется с Природой, или законами физики, или нашим священным трепетом перед величием Вселенной, то вопрос, предоставляет ли такой подход практичный способ мышления о мире, лежит вне масштабов эмпирического изыскания.
Совершенно иная традиция — искать свидетельства существования Бога в работе физической Вселенной. Это подход естественной теологии — учения, зародившегося задолго до Аристотеля и через аналогию с часовщиком Уильяма Пейли дожившего до наших дней.[308] Раньше лучшим свидетельством истинности сотворения мира служили живые организмы, но Дарвин предложил элегантный механизм, раскладывающий по полочкам то, что раньше казалось абсолютно необъяснимым. В ответ на это некоторые приверженцы данной философии сместили фокус внимания на другую, казалось бы, необъяснимую вещь — от происхождения жизни к происхождению космоса.
Модель Большого взрыва со своим сингулярным началом внушает определенный оптимизм тем, что ищет след перста Божьего в создании Вселенной. (Жорж Леметр, бельгийский священник, разработавший модель Большого взрыва, отказался связывать ее с какими бы то ни было теологическими целями: «Насколько я могу видеть, такая теория остается полностью вне каких-либо метафизических или религиозных вопросов».[309]) В ньютоновском пространстве—времени вообще не было такой вещи, как создание Вселенной, по крайней мере не в форме события, случившегося в какой-то определенный момент времени; время и пространство существовали всегда. Добавление какого-то специального начала пространства—времени, особенно такого, который очевидным образом бросает вызов простому пониманию, создает искушение переложить ответственность за объяснение того, во что мы вляпались, на плечи Господа. Люди при этом обычно мыслят так: конечно же, вы можете найти динамические законы, управляющие эволюцией Вселенной от одного момента к другому, но объяснение самой Вселенной невозможно без воззвания к чему-то, находящемуся за ее пределами.
Надеюсь, одним из подспудных уроков этой книги стало то, что делать ставки против способности науки объяснить что угодно в мире, включая его начало, — плохая идея. Большой взрыв представляет собой точку, за пределы которой наше понимание не распространяется. Так было в 1920-е годы, когда эта модель впервые подверглась изучению, так продолжается и сегодня. Мы не знаем точно, что произошло 14 миллиардов лет назад, но нет никаких причин сомневаться в том, что однажды мы сумеем докопаться до сути. Ученые подходят к решению этой задачи с самых разных сторон. С какой скоростью будут появляться новые научные достижения — предсказать очень сложно, но не сложно предсказать, что успехи определенно будут.
Так где же мы находимся сейчас? Джордано Бруно отстаивал идею гомогенной Вселенной с бесконечным числом звезд и планет. Авиценна и Галилео, благодаря идее о сохранении импульса, устранили необходимость в Первичном двигателе для объяснения инерции движения. Дарвин объяснил эволюцию видов как ненаправленный процесс наследования со случайными модификациями, движимый естественным отбором. Современная космология утверждает, что наша наблюдаемая Вселенная может быть всего лишь одной из бесконечного числа Вселенных в рамках огромной составной Мультиленной. Чем больше мы понимаем о мире, тем меньше и незначительнее для его существования кажемся мы сами.[310]
Это нормально. Мы обнаруживаем себя не центральными игроками на поле космической жизни, а крошечным сопутствующим явлением, процветающим в течение краткого времени, пока нам удалось оседлать волну растущей энтропии между Большим взрывом и тихой пустотой будущей Вселенной. Мы не найдем своей цели и предназначения в законах природы или в планах какого-либо внешнего агента, создавшего мир таким, какой он есть; придумать их — наша забота. Одна из этих целей — среди многих других — берет начало в нашем стремлении как можно лучше объяснить окружающий мир. Пусть наши жизни коротки и не имеют четкого направления, но по крайней мере мы можем гордиться тем, с какой отвагой мы объединяем усилия в попытках понять вещи, куда более великие, чем мы сами.
Следующие шаги
Удивительно, насколько сложно четко оформлять свои мысли, когда думаешь о времени. Мы все знакомы с ним, но, возможно, проблема как раз в том, что знакомы мы с ним слишком близко. Мы настолько привыкли к стреле времени, что представить себе понятие времени без стрелы нам невероятно сложно. Мы покорно демонстрируем временно́й шовинизм, как от нас и требуется, проводя разграничительную линию между объяснениями нашего текущего состояния в терминах прошлого и в терминах будущего. Даже высококвалифицированные космологи подвержены этой болезни.
Несмотря на массу потраченных чернил и бумаги и весь шум, сопутствовавший обсуждениям природы времени, я убежден, что изучению этого феномена посвящается слишком мало сил и времени — отнюдь не слишком много. Однако, похоже, ситуация начинает исправляться. Тесно переплетенные тематики времени, энтропии, информации и сложности перекидывают мосты между поразительным разнообразием интеллектуальных дисциплин: физикой, математикой, биологией, психологией, вычислительной техникой и искусством. Самое время всерьез заняться вопросом времени и встретить бросаемые им вызовы с высоко поднятой головой.
Что касается физики, это уже начинает происходить. На протяжении большей части XX века космология смахивала на стоячее болотце: идей было много, но данных, которые бы позволили провести между ними различие, отчаянно не хватало. Эра точной космологии, приводимая в движение крупномасштабными исследованиями, которые стали возможны благодаря новым технологиям, кардинально все изменила; были открыты неожиданные чудеса — от ускорения Вселенной до снимка ранних времен, который предоставляет нам космическое микроволновое излучение.[311] Теперь настал черед идеям поравняться с реальностью. У нас есть интересные предположения о том, как могла зародиться Вселенная и что могло происходить до этого, связанные и с инфляцией, и с квантовой космологией, и с теорией струн. Наша задача — довести до ума эти многообещающие идеи, превратив их в честные теории, которые можно будет сравнить с экспериментальными данными и подружить с оставшейся частью физики.
Предсказывать будущее непросто (вините в этом отсутствие низкоэнтропийного граничного условия в будущем!). Но кусочки мозаики постепенно собираются вместе, подталкивая науку к тому, чтобы сделать огромный шаг вперед, к формулировке ответов на вечные вопросы о прошлом и будущем. Настало время нам с вами понять свое место в вечности.