О да, мой сын, в пространстве время здесь!
Все знают, как выглядит машина времени: это такие стимпанковские сани с красным бархатным креслом, переливающимися огоньками и гигантским вращающимся штурвалом позади. Для представителей юного поколения сносной заменой будет навороченный спортивный автомобиль, увешанный хитрыми приспособлениями, а наши британские читатели наверняка отдадут предпочтение лондонской полицейской будке в стиле 50-х годов.[79] Функциональные подробности могут разниться от модели к модели, но одно известно точно: отправляясь в путешествие во времени, машина обязана дематериализоваться в облаке спецэффектов, для того чтобы возникнуть где-то за многие тысячелетия в прошлом или будущем.
Однако на самом деле все происходит совсем не так. Не потому, что путешествия во времени невозможны, а сама идея выглядит нелепицей; реальны или нереальны путешествия во времени — вопрос куда более сложный и неопределенный, чем вы можете себе вообразить. Я много раз подчеркивал сходство времени с пространством. Продолжим эту мысль: если вам повезет наткнуться на рабочую машину времени в лаборатории какого-нибудь сумасшедшего изобретателя, то вы увидите обычную «машину пространства» — банальное транспортное средство того или иного рода, предназначенное для перемещения из одного места в другое. Если уж вам хочется визуализировать путешествие в машине времени, представляйте себе ее старт как запуск космического корабля, а не как исчезновение в клубах дыма.
Так что же в действительности подразумевает путешествие во времени? Для нас интерес могут представлять два случая: путешествие в будущее и путешествие в прошлое. В будущее попасть легко: как сидели в кресле, так и продолжайте сидеть. Каждый час вы будете перемещаться ровно на час в будущее. Вы возразите: «Но ведь это скучно! Я хочу попасть далеко в будущее и как можно быстрее, а не переползать за каждый час всего лишь на один час вперед. Я хочу увидеть двадцать четвертый век еще до обеда!» Однако нам известно, что невозможно двигаться со скоростью, превышающей один час в час относительно часов, которые путешествуют вместе с вами. Вы можете попытаться перехитрить себя, погрузившись в сон или в искусственную кому, но время идти не перестанет.
С другой стороны, вы можете изменить промежуток времени, затрачиваемый на прохождение вдоль вашей мировой линии по сравнению с мировыми линиями других людей. В ньютоновской Вселенной это невозможно, так как время универсально и вдоль всех мировых линий, соединяющих одни и те же два события, проходит один и тот же период времени. Однако специальная теория относительности позволяет нам управлять промежутками времени путем перемещения в пространстве. Движению без ускорения соответствует самый длинный временной интервал между двумя событиями; поэтому если вы желаете быстро (с вашей точки зрения) попасть в будущее, вам нужно всего лишь двигаться сквозь пространство—время по сильно искривленному пути. Вы можете улететь в межзвездное пространство на скорости, близкой к скорости света, а затем вернуться или, если запас топлива на вашей ракете достаточно велик, просто летать кругами на сверхвысокой скорости, никогда особенно не удаляясь от стартовой точки в пространстве. Когда вы приземлитесь и выйдете из космического корабля, помимо головокружения у вас будет понимание, что вы «переместились в будущее», или, точнее, что вдоль вашей мировой линии прошло меньше времени, чем вдоль мировых линий всех тех людей, с которыми вы попрощались при старте. Путешествовать в будущее просто, а как быстро вы будете перемещаться — вопрос исключительно ваших технологических возможностей. Это абсолютно не противоречит фундаментальным законам физики.
Однако в какой-то момент вам захочется вернуться обратно, и тут вы столкнетесь с настоящими трудностями. Главные проблемы путешествия во времени связаны как раз с путешествием в прошлое.
Жульничество с пространством—временем
Несмотря на уроки, которые мы извлекли из фильмов о Супермене, путешествие назад во времени не означает изменения направления вращения Земли на обратное. В этом должно участвовать само пространство—время. Если только, разумеется, вы не решите сжульничать, начав двигаться со скоростью выше скорости света.
В ньютоновской Вселенной вопрос путешествия назад во времени вообще не ставится. Мировые линии пронзают пространство—время, которое однозначно разделяется на трехмерные моменты равного времени, и правило о том, что мировые линии не могут менять направление и возвращаться назад, нерушимо. В специальной теории относительности дела обстоят не намного лучше. Определение «моментов равного времени» во Вселенной достаточно произвольно, однако в каждом событии мы сталкиваемся с ограничениями, накладываемыми световыми конусами. Будучи существами, сделанными из обычной материи, мы вынуждены двигаться из любого события вперед, внутрь светового конуса. Поэтому у нас нет никакого шанса вернуться во времени назад; на диаграмме пространства—времени мы неустанно шагаем вверх.
Если бы мы были сделаны из чего-то необычного, например тахионов — частиц, скорость движения которых всегда превышает скорость света, ситуация была бы немного интереснее. К сожалению, мы состоим не из тахионов, и есть веские основания полагать, что тахионы вообще не существуют. В отличие от обычных частиц, тахионы всегда вынуждены двигаться за пределами светового конуса. В специальной теории относительности объект, движущийся вне светового конуса, с точки зрения некоторых наблюдателей перемещается во времени назад. Кроме того, световые конусы — единственные структуры, определенные в пространстве—времени теории относительности; такого понятия, как «пространство в какой-то момент времени», попросту нет. Таким образом, если вы с какой-то частицей оказываетесь в одном и том же событии и она вылетает за пределы вашего светового конуса (быстрее света), это означает, что относительно вас она может перемещаться в прошлое. Остановить ее невозможно.
Получается, что тахион способен совершить нечто пугающее и непредсказуемое: «стартовать» из некоего события на мировой линии обычного, движущегося медленнее скорости света объекта (мы помним, что событие определяется некоторым положением в пространстве и некоторым моментом времени) и проследовать по пути, который приведет его в предыдущую точку на той же самой мировой линии. Вооружившись фонариком, испускающим тахионы, вы (по идее) могли бы сконструировать хитрую систему зеркал и отправлять световые сигналы азбукой Морзе в прошлое самому себе. Вы могли бы предостеречь себя в прошлом, что вот в то посещение ресторана креветки заказывать не стоит, или что не нужно идти на свидание со странноватой коллегой, или что неразумно вкладывать все свои сбережения в акции Pets.com.
Рис. 6.1. Если бы тахионы существовали, они могли бы испускаться обычными объектами и улетать, для того чтобы быть поглощенными в прошлом. В каждом событии на своей траектории тахион двигается за пределом светового конуса
Очевидно, что путешествия назад во времени порождают возможность возникновения парадоксов, а это способно любого человека выбить из колеи. Однако вернуть все на свои места совсем несложно: объявите, что тахионы, скорее всего, не существуют, а также несовместимы с законами физики.[80] Это одновременно и продуктивно, и недалеко от истины, по крайней мере до тех пор, пока вы не выходите за рамки специальной теории относительности. Когда в игру вступит искривленное пространство—время, все станет куда запутаннее и увлекательнее.
Круги во времени
Траектории в пространстве—времени тех из нас, кто сделан не из тахионов, ограничены скоростью света. Начиная с события, определяющего наше текущее местоположение — каким бы оно ни было, мы можем двигаться только «вперед во времени», навстречу какому-то другому событию внутри нашего светового конуса. Говоря научным языком, мы движемся сквозь пространство—время по времениподобной траектории. Это локальное требование, распространяющееся не на всю Вселенную, а лишь на некоторую окрестность вокруг нас. Но в общей теории относительности пространство—время искривлено. Это означает, что световые конусы в нашей окрестности не обязательно смотрят «в ту же сторону», что и световые конусы где-то вдалеке, — они могут быть наклонены по отношению друг к другу. Вспомните обсуждение из предыдущей главы, где световые конусы наклонялись в сторону черной дыры, — здесь мы говорим о точно таком же явлении.
Теперь представьте себе, что, вместо того чтобы наклоняться в сторону сингулярности и создавать черную дыру в нашем пространстве—времени, световые конусы формируют окружность, как показано на рис. 6.2. Очевидно, что это потребовало бы наличия чрезвычайно сильного гравитационного поля, но мы можем позволить себе принять такое допущение. Если бы пространство—время было искривлено таким способом, то это бы порождало потрясающее следствие: мы могли бы следовать по времениподобному пути всегда вперед, в световой конус будущего, но в конечном счете встречаться с самими собой в каком-то момент в прошлом. Иными словами, наша мировая линия описывала бы в пространстве замкнутую окружность, пересекающую саму себя, благодаря чему мы в какой-то момент своей жизни сталкивались бы с собой образца какого-то другого момента.
Рис. 6.2. В искривленном пространстве—времени световые конусы могли бы выстраиваться в окружность, формируя закрытые времениподобные пути
Такая мировая линия — всегда движущаяся вперед с локальной точки зрения, но умудряющаяся пересечься с самой собой в прошлом — называется замкнутой времениподобной кривой, или ЗВК. Именно ее мы имеем в виду, когда говорим о «машине времени» в рамках общей теории относительности. Для перемещения вдоль замкнутой времениподобной кривой вам потребуется обычное средство передвижения через пространство, скажем космический корабль. Возможно, сойдет и что-нибудь более приземленное: например, продолжать сидеть «без движения» в собственном кресле. Искривление пространства—времени само приведет вас в момент прошлого. Это центральное свойство общей теории относительности, которое сыграет важную роль позже, когда мы вернемся к обсуждению зарождения Вселенной и проблемы энтропии: пространство—время не высечено в мраморе, оно может меняться (даже появляться или исчезать), реагируя на воздействие материи и энергии.
В общей теории относительности легко найти пространство—время, и даже не одно, в котором встречаются замкнутые времениподобные кривые. Еще в 1949 году математик и логик Курт Гёдель нашел решение уравнения Эйнштейна, описывающее «вращающуюся» Вселенную. Его решение содержало замкнутые времениподобные кривые, проходящие через каждое событие. Гёдель подружился с бывшим уже в возрасте Эйнштейном во время работы в Институте перспективных исследований в Принстоне, и идея решения возникла из бесед между двумя учеными.[81] В 1963 году новозеландский математик Рой Керр нашел точное решение, описывающее вращающуюся черную дыру; поразительно, что в этом случае сингулярность принимает форму быстро вращающегося кольца, в окрестности которого находятся замкнутые времениподобные кривые.[82] А в 1974 году Франк Типлер доказал, что бесконечно длинный, состоящий из вещества вращающийся цилиндр, при условии, что он обладает достаточной плотностью и вращается достаточно быстро, будет создавать вокруг себя замкнутые времениподобные кривые.[83]
Однако для того чтобы сконструировать пространство—время с замкнутыми времениподобными кривыми, совсем не обязательно прилагать такие усилия. Возьмите самое заурядное плоское пространство—время, знакомое вам еще по специальной теории относительности. А теперь представьте, что времениподобное направление (определяемое каким-то конкретным движущимся без ускорения наблюдателем) представляет собой окружность, а не простирается вперед в бесконечность. В такой Вселенной объект, движущийся вперед во времени, будет снова и снова возвращаться к одному и тому же моменту в истории Вселенной. В фильме Гарольда Рамиса «День сурка» герой Билла Мюррея каждое утро просыпается в одной и той же обстановке и в течение дня оказывается ровно в тех же ситуациях, которые уже пережил днем раньше. Вселенная с циклическим временем, о которой мы говорим здесь, приблизительно так и выглядит. Однако имеются два важных исключения: во-первых, все дни были бы совершенно одинаковыми, включая действия и поступки главного героя, а во-вторых, вырваться из этого круга было бы невозможно. В частности, даже завоевание Энди Макдауэлл вас бы не спасло.
Рис. 6.3. Вселенная с циклическим временем, сконструированная путем отождествления двух моментов в плоском пространстве—времени. Показаны две замкнутые времениподобные кривые: первая замыкается за один проход (из a в a'), а вторая описывает две петли (из b в b', затем из b'' в b''')
Вселенная с циклическим временем — не только игровая площадка для создателей фильмов; она также представляет собой точное решение уравнения Эйнштейна. Как вы помните, выбрав движущуюся без ускорения систему координат, мы можем «нарезать» четырехмерное плоское пространство—время на трехмерные моменты одинакового времени. Возьмем два таких среза: скажем, полночь 2 февраля и полночь 3 февраля — два момента во времени, распространенные на всю Вселенную (в данном конкретном случае плоского пространства—времени в данной конкретной системе координат). Теперь возьмем этот отрезок пространства—времени длиной в один день между двумя срезами, а все остальное отбросим. Наконец, отождествим время начала и время конца, то есть сформулируем правило, согласно которому как только мировая линия доходит до какой-то точки в пространстве 3 февраля, она моментально заново появляется из соответствующей точки пространства в прошлом, 2 февраля. По сути, это то же самое, что скатать в трубочку лист бумаги и склеить края. В любом событии, даже в полночь 2 и 3 февраля, все выглядит совершенно гладко. Пространство—время плоское: время представляет собой окружность, а все точки на окружности абсолютно равноправны и ничем не отличаются друг от друга. Это пространство—время изобилует замкнутыми времениподобными кривыми, как показано на рис. 6.3. Возможно, у нас получилась не самая реалистичная Вселенная, однако мы убедились в том, что сами по себе правила общей теории относительности не противоречат существованию замкнутых времениподобных кривых.
Врата во вчера
Есть две основные причины, почему большинство людей, хотя бы немного времени посвятивших обдумыванию возможности путешествий во времени, поместили их на полку «Научная фантастика», а не «Серьезные исследования». Во-первых, трудно представить, как на практике создать замкнутую времениподобную кривую, несмотря на то что, как мы увидим далее, определенные идеи все же были высказаны. Во-вторых, и это куда более основательная причина, в действительности практически невозможно придумать разумное толкование такого явления, как «путешествие во времени». Стоит нам согласиться с возможностью путешествий в прошлое, и мы сможем легко привести массу примеров абсурдных и парадоксальных ситуаций.
Для того чтобы прояснить это утверждение, рассмотрим следующий простой пример машины времени: врата во вчерашний день (с тем же успехом мы могли бы взять «врата в завтра» — просто перемещаться нужно было бы в противоположную сторону). Представьте себе, что в поле стоят волшебные ворота. Это совершенно обычные, ничем не примечательные ворота, за одним важным исключением: когда вы проходите в них «спереди», то оказываетесь на том же самом поле с другой стороны ворот, но на день раньше — по крайней мере с точки зрения «фонового времени», измеряемого внешними наблюдателями, которые никогда не проходят сквозь ворота. (Предположим, что в поле установлены фиксированные часы, которые никто не проносит сквозь ворота, и эти часы синхронизированы с покоящейся системой координат самого поля.) И наоборот, когда вы проходите сквозь ворота «сзади», вы оказываетесь перед ними, но на день позже того момента, когда вы собрались перешагнуть порог.
Рис. 6.4. Врата во вчера и одна из возможных мировых линий. Путешественник проходит через ворота спереди (a) (на рисунке это справа) и оказывается позади ворот на один день раньше (a’). Он проводит половину дня, гуляя по полю, а затем снова проходит через ворота опять спереди (b) и переносится на один день назад (b’). После этого он выжидает целый день и проходит через ворота сзади (c), появившись в итоге перед воротами через один день в будущем
Это все звучит удивительно и волшебно, но в действительности мы всего лишь описали частный тип необычного пространства—времени, идентифицировав набор точек в пространстве в разные моменты времени. Никто не исчезает в клубах дыма; с точки зрения любого конкретного наблюдателя его мировая линия непрерывно продвигается в будущее, секунда за секундой. Заглядывая в ворота спереди, вы не натыкаетесь взором на чернильно-черную пустоту или всполохи психоделических цветов; вы видите поле, простирающееся с другой стороны ворот, — точно так же, как если бы посмотрели на него сквозь любую другую дверь. Единственное отличие заключается в том, что вы видите, как это поле выглядело вчера. Если вы наклоните голову и посмотрите на поле сбоку от ворот, то увидите, как оно выглядит сегодня, тогда как взгляд сквозь ворота спереди дает вам представление о вчерашнем состоянии поля. Аналогично, если обойти ворота и посмотреть сквозь них сзади, то вы увидите другую часть поля — в том состоянии, в котором она будет находиться завтра. Ничто не мешает вам пройти сквозь ворота и сразу же вернуться назад и проделывать это столько раз, сколько вам заблагорассудится. Более того, вы можете даже поставить ноги по обе стороны ворот и стоять так сколь угодно долго. Вы не будете чувствовать никакого странного покалывания, и у вас не возникнет никаких других необычных ощущений. Все будет казаться совершенно нормальным, за исключением точных часов, закрепленных по обеим сторонам ворот: разница показаний на этих часах будет составлять ровно одни сутки.
Пространство—время с вратами во вчера совершенно определенно содержит замкнутые времениподобные кривые. Все, что вам нужно сделать, — это пройти через ворота спереди, для того чтобы вернуться на один день назад, затем обойти ворота, снова оказавшись перед ними, и терпеливо подождать. Ровно через день вы обнаружите себя в том же месте и моменте пространства—времени, в котором вы находились сутки назад (по вашим персональным часам), и, разумеется, вы встретитесь там с копией себя образца прошлых суток. При желании вы сможете обменяться любезностями с собой из прошлого и обсудить подробности прошедшего дня. В этом и заключается суть замкнутой времениподобной кривой.
И здесь в игру вступают парадоксы. По какой-то причине физикам нравится делать свои мысленные эксперименты как можно более жестокими и беспощадными; вспомните, к примеру, Шрёдингера и его несчастного кота.[84] Когда дело доходит до путешествий во времени, стандартный сценарий включает перемещение в прошлое и убийство своего дедушки до того, как тот успеет встретиться с бабушкой, чтобы, таким образом, предотвратить собственное рождение. Парадокс, порождаемый этим деянием, очевиден: если ваши дедушка с бабушкой так и не встретились, то как вы могли появиться на свет, а потом отправиться в прошлое и убить одного из своих предков?[85]
Однако не обязательно воображаемые события должны быть настолько драматичными. Вот более простой и мирный пример парадокса. Вы подходите к вратам во вчера и замечаете, что вас там ждет ваша копия, выглядящая примерно на день старше, чем вы сейчас. Поскольку вам известно о существовании замкнутых времениподобных кривых, вы не слишком удивляетесь такому повороту событий: очевидно, что ваша копия просто бродила вокруг ворот в ожидании встречи с вами, для того чтобы пожать руку своей версии из прошлого. Итак, вы двое мило беседуете некоторое время, а затем вы покидаете компанию своей копии и проходите через ворота спереди, попадая в результате во вчерашний день. Но после этого — исключительно из упрямства — вы решаете, что более не желаете придерживаться традиции. Вместо того чтобы болтаться на этом поле, готовясь к встрече со своей более молодой копией, вы уходите оттуда, ловите такси в аэропорт и садитесь на рейс до Багамских островов. Вы даже не встречаетесь с той копией себя, которая первой прошла через ворота. Однако та копия встречалась со своей копией из будущего — ведь вы храните воспоминания об этой встрече. Что же происходит?
Одно простое правило
Существует простое правило, разрешающее все возможные парадоксы путешествий во времени.[86] Оно гласит: парадоксов не бывает.
Вот так. Проще простого.
Пока что ученые не обладают достаточными знаниями для того, чтобы говорить, допускают ли физические законы существование макроскопических замкнутых времениподобных кривых. Если нет, то и необходимости беспокоиться о парадоксах тоже нет. Но гораздо интереснее такой вопрос: всегда ли замкнутые времениподобные кривые приводят к возникновению парадоксов? Если это так, то их существование невозможно и вопрос закрыт.
Однако вполне возможно, что парадоксы не являются непременными спутниками замкнутых времениподобных кривых. Мы все согласны, что события, противоречащие логике, происходить не могут. В частности, в классической физике, с которой мы работаем в данный момент (в противоположность квантовой механике[87]), существует один-единственный верный ответ на вопрос «Что произошло в окрестности данного события в пространстве—времени?». В каждой области пространства—времени что-то происходит: вы проходите сквозь ворота, вы находитесь в одиночестве, вы встречаете кого-то еще, вы почему-то не приходите на встречу, — что угодно. И это что-то является именно тем, чем является, и было именно тем, чем было, и будет именно тем, чем будет, сейчас и всегда. Если в каком-то событии пространства—времени ваш дедушка заигрывал с вашей бабушкой, то именно это и происходило в том событии. Вы никак не сможете это изменить, потому что это уже случилось. Одинаково невозможно повлиять на события в прошлом как пространства—времени, содержащего замкнутые времениподобные кривые, так и пространства—времени, где таких кривых нет.[88]
Очевидно, что непротиворечивые истории возможны, причем даже в пространствах—временах с замкнутыми времениподобными кривыми. На рис. 6.4 изображена мировая линия одного бесстрашного путешественника, который дважды перепрыгивает назад во времени, а затем ему становится скучно, и он делает один прыжок в будущее, прежде чем уйти от волшебных ворот. Его перемещения не таят никаких парадоксов. Точно так же мы могли бы взять сценарий из предыдущего раздела и немного переделать его, чтобы исключить парадоксы. Вы подходите к воротам, видите свою копию, которая старше вас на один день; вы обмениваетесь любезностями, а затем проходите через ворота спереди и оказываетесь во вчерашнем дне. Однако вместо того чтобы демонстрировать упрямство и уходить прочь, вы выжидаете один день и встречаетесь со своей более молодой копией, с которой обмениваетесь любезностями, прежде чем пойти по своим делам. Какой бы участник событий ни описал происходящее, его версия будет превосходно согласована.
Мы могли бы придумать массу куда более драматичных историй, которые тем не менее будут безупречно согласованы. Вообразите, что нас назначили Стражами Врат, и наша работа — неусыпно наблюдать за проходящими сквозь ворота. Однажды, стоя по сторонам от ворот, мы замечаем незнакомца, вышедшего из ворот с тыльной стороны. Ничего странного; это всего лишь означает, что незнакомец завтра войдет (или уже вошел? — в нашем языке нет подходящих конструкций для описания путешествий во времени) в ворота спереди. Продолжая бдительно охранять ворота, мы видим, что этот незнакомец бродит по округе в течение дня, а затем, спустя ровно двадцать четыре часа, спокойно проходит через ворота спереди. Никто больше ниоткуда не появлялся, а незнакомцы, один из которых вошел в ворота, а другой вышел из них, формируют замкнутый цикл — эти двадцать четыре часа и есть полное время жизни незнакомца. История может показаться жутковатой и невероятной, однако в ней отсутствуют парадоксы и нет никаких логических противоречий.[89]
Вопрос же, который интересует нас больше всего, — что произойдет, если мы попытаемся мутить воду? Если решим, что не хотим следовать предписанному плану? В истории, где вы встречаетесь со своей копией старше вас на один день, а затем пересекаете порог врат и оказываетесь в прошлом, есть потенциальная развилка. Кажется, что после того, как вы прошли сквозь врата, у вас есть выбор: вы можете послушно выполнить свое предназначение или же взбунтоваться и уйти прочь. Итак, если вы все же решите пойти наперекор, что вас остановит? Вот здесь вся эта история с парадоксами и становится по-настоящему серьезной.
Мы знаем ответ: парадоксы невозможны. Если вы встретились со своей старшей копией, то мы можем утверждать с абсолютной метафизической уверенностью, что как только вы достигнете этого возраста, вы обязаны будете встретиться со своим более молодым дублем. Представьте себе, что мы убрали из условий задачи непослушные человеческие создания и рассматриваем простые неодушевленные объекты, например последовательность биллиардных шаров, прокатывающихся сквозь ворота. Существует масса наборов согласованных явлений, которые могли бы происходить в различных событиях пространства—времени, но только один из наборов произойдет в действительности.[90] Согласованные истории случаются, несогласованные — нет.
Энтропия и машины времени
Если заглянуть в самую суть вещей, то станет очевидно, что в действительности нас волнуют вовсе не законы физики: главная проблема — свобода воли. Мы живем с уверенностью, что над нами не может довлеть никакое предопределение, согласно которому мы так или иначе сделаем то, чего делать не хотим. Трудно сохранять такое ощущение, увидев, что мы уже делаем это.
Иногда наша свободная воля порабощается законами физики. Если выбросить человека из окна на верхнем этаже небоскреба, то он со свистом пронесется вниз и ударится о землю, как бы сильно ему ни хотелось улететь и безопасно приземлиться где-нибудь подальше. С таким вариантом предопределения мы смириться в состоянии. Однако принять намного более детализированное предопределение, навязываемое замкнутыми времениподобными кривыми, куда труднее. Создается впечатление, что существование непротиворечивой истории в пространстве—времени исключает возможности проявления свободной воли, которые были бы доступны в противном случае. Конечно, если бы мы были убежденными детерминистами, то верили бы, что атомы наших тел вступают в сговор с внешним миром и, подчиняясь непреложным законам ньютоновской механики, заставляют нас действовать во избежание парадоксов в точности по предписанному сценарию. Однако это все же не согласуется с тем, как мы привыкли мыслить о себе и своем месте в этом мире.[91]
Суть проблемы заключается в том, что при условии наличия замкнутых времениподобных кривых существование согласованной и непротиворечивой стрелы времени становится невозможным. Общая теория относительности меняет формулировку утверждения: «Мы помним прошлое, но не будущее»; теперь оно звучит так: «Мы помним события из светового конуса прошлого, но не из светового конуса будущего». Однако на замкнутой времениподобной кривой есть события, принадлежащие как световому конусу прошлого, так и световому конусу будущего — ведь эти два конуса перекрываются. Так что же, должны мы помнить такие события или нет? Мы могли бы согласовать события на замкнутой времениподобной кривой с законами физики на микроскопическом уровне, однако они не могут быть совместны с непрерывным увеличением энтропии вдоль кривой.
Для того чтобы в полной мере осознать значимость этого утверждения, подумайте о гипотетическом незнакомце, который выходит из ворот, а затем, сутки спустя, снова в них входит, но уже с другой стороны. Таким образом, история всей его жизни — это однодневный цикл, повторяющийся снова и снова, до бесконечности. Задумайтесь, какой непревзойденный уровень точности необходим, чтобы воспроизводить этот цикл день за днем (если считать, что цикл начинается в некоторой «стартовой» точке). Каждый день в одно и то же время незнакомец должен убеждаться, что каждый атом его тела занял именно то положение, в котором будет возможно его плавное слияние с самим собой из прошлого. Он должен проверять, например, что на его одежде не осело ни единой новой пылинки, которой не было сутки назад, что содержимое его пищеварительной системы в точности такое же, как день назад, и что его волосы и ногти абсолютно такой же длины. Мягко говоря, это несовместимо с нашим представлением о том, как происходит увеличение энтропии, даже это не есть прямое нарушение второго начала термодинамики (так как незнакомец не является закрытой системой). Если бы он просто пожал руку своей копии из прошлого, вместо того чтобы становиться ею, это бы не потребовало такого невообразимого уровня точности; однако в любом случае необходимость находиться в правильном месте в правильное время накладывает чрезвычайно строгие ограничения на возможные действия в будущем.
Наша концепция свободной воли тесно связана с идеей о том, что прошлое увековечено на скрижалях истории, тогда как будущее мы творим сами по своему разумению. Даже если верить, что законы физики точно фиксируют изменение какого-то конкретного состояния Вселенной, мы все равно не знаем, что это за состояние, так что в реальном мире увеличение энтропии приводит к бесконечному числу вариантов будущего. Тот тип предопределения, к которому приводит непротиворечивая эволюция в присутствии замкнутых времениподобных кривых, абсолютно аналогичен предопределению во Вселенной, где задано граничное условие в будущем, приводящее там к низкой энтропии — только в локальном масштабе.
Другими словами, если бы замкнутые времениподобные кривые существовали, то непротиворечивая эволюция в их присутствии казалась бы нам такой же странной и неестественной, как кино, прокручиваемое в обратном направлении, или любой другой пример развития событий по сценарию уменьшения энтропии. Это не невозможно — просто крайне маловероятно. Таким образом, либо замкнутые времениподобные кривые не существуют, либо большие макроскопические объекты не могут перемещаться сквозь пространство—время по действительно замкнутым путям — ну, или все, что, как нам кажется, мы знаем о термодинамике, неверно.
Предсказания и причуды
Жизнь на замкнутой времениподобной кривой кажется ужасающе предопределенной: если система движется по замкнутому контуру вдоль этой кривой, то она обязана каждый раз возвращаться точно в то состояние, с которого движение началось. При этом с точки зрения внешнего наблюдателя замкнутые времениподобные кривые также поднимают проблему, казалось бы, совершенно противоположной природы: исходное состояние Вселенной не позволяет однозначно предсказать, что будет происходить на этих кривых. Получается, что у нас есть очень строгое ограничение, в соответствии с которым движение вдоль замкнутых времениподобных кривых должно происходить самосогласованно, но в то же время число таких самосогласованных и непротиворечивых движений чрезвычайно велико, и никакие законы физики не в состоянии дать точный ответ, какое из них выберет система.[92]
Мы обсуждали различия между взглядом на Вселенную презентистов, которые считают реальным лишь текущий момент, и этерналистов — приверженцев концепции блочной Вселенной, в соответствии с которой все события на протяжении всей истории Вселенной одинаково реальны. Это интересный философский спор — какой взгляд представляет более плодотворную версию реальности; для физика они, однако, практически идентичны. Принято считать, что законы физики работают как компьютер: вы даете им на вход текущее состояние, а они сообщают, каким это состояние станет мгновение спустя (или было мгновением раньше, если интересно). Повторяя этот процесс много-много раз, мы можем получить предсказание для всей истории Вселенной от начала и до конца. В этом смысле всестороннее знание текущего состояния подразумевает полное знание всей истории Вселенной.
Замкнутые времениподобные кривые делают подобные «программы» невозможными; чтобы убедиться в этом, достаточно простого мысленного эксперимента. Еще раз обратим наше внимание на незнакомца, вышедшего из врат во вчера, который сутки спустя снова вошел в них с другой стороны, сформировав замкнутый цикл. Нет никакого способа предсказать существование такого незнакомца, отталкиваясь от какого-то более раннего состояния Вселенной. Предположим, что мы начинаем свой эксперимент во Вселенной, в которой в этот конкретный момент не существует замкнутых времениподобных кривых. Предполагается, что законы физики позволяют предсказать, что произойдет в будущем этого момента. Однако если кто-то создаст замкнутую времениподобную кривую, мы лишимся такой возможности. Как только во Вселенной появляется возможность существования замкнутых времениподобных кривых, загадочные незнакомцы и прочие случайные объекты начинают появляться тут и там и перемещаться вдоль этих кривых… или нет. Невозможно предсказать, что произойдет дальше, исходя лишь из полного знания состояния Вселенной в один из предыдущих моментов времени.
Другими словами, мы сколько угодно можем говорить о том, что происходящее в присутствии замкнутых времениподобных кривых непротиворечиво, а парадоксы отсутствуют. Однако это не делает происходящее также и предсказуемым, то есть не дает нам возможности предсказать будущее с помощью законов физики, начиная с состояния Вселенной в какой-то конкретный момент времени. Более того, замкнутые времениподобные кривые делают несостоятельным само определение «Вселенной в какой-то конкретный момент времени». В предыдущем нашем обсуждении пространства—времени критически важным моментом была возможность «нарезки» четырехмерной Вселенной на трехмерные «моменты времени», которые мы помечали соответствующими значениями временной координаты. Однако в присутствии замкнутых времениподобных кривых мы, по сути, не в состоянии этого сделать.[93] Локально — в ближайшей окрестности любого интересующего нас события — деление пространства—времени на «прошлое» и «будущее» с помощью световых конусов абсолютно такое же. Глобально мы не сможем последовательно разделить Вселенную на моменты времени.
Следовательно, в присутствии замкнутых времениподобных кривых нам придется позабыть о понятии «детерминизма» — идее о том, что состояние Вселенной в любой конкретный момент времени определяет ее состояния во все остальные моменты. Так ли высоко мы ценим детерминизм, чтобы эта проблема заставила нас полностью отвергнуть возможность существования замкнутых времениподобных кривых? Совсем не обязательно. Можно просто по-другому представлять себе работу законов физики — не как компьютера, вычисляющего состояние в следующий момент на основании текущего состояния. Например, мы можем считать физические законы неким набором условий, которые наложены на историю Вселенной в целом. Пока что неясно, что это могут быть за условия, но нельзя отбрасывать эту идею исключительно на основании умозрительных заключений.
Все эти метания из стороны в сторону могут казаться неуместными, однако они иллюстрируют важный урок. Частично наше понимание времени базируется на логике и известных законах физики, однако отчасти мы также руководствуемся бытовым удобством и кажущимися правдоподобными предположениями. Мы думаем, что возможность единственным образом предсказывать будущее на основании знаний о текущем состоянии важна, но у реального мира могут быть совсем иные мысли на этот счет. Если бы замкнутые времениподобные кривые могли существовать, то вечному спору между этерналистами и презентистами пришел бы конец: победа была бы обеспечена блочной Вселенной этерналистов. Очевидно, что возникающие то тут, то там замкнутые времениподобные кривые не позволили бы поделить Вселенную на последовательность «состояний настоящего».
Окончательный ответ на загадку замкнутых времениподобных кривых заключается в том, что они, вероятно, попросту не существуют (и не могут существовать). И если это действительно так, то причина в том, что законы физики не позволяют пространству—времени искривляться в достаточной мере, для того чтобы формировать подобные кривые, а не в том, что подобные кривые открыли бы путь к убийству наших предков. Так что менять нужно физические законы.
Флатландия
Замкнутые времениподобные кривые предлагают нам интересную лабораторию для мысленных экспериментов по исследованию природы времени. Тем не менее для того, чтобы всерьез воспринимать их, нам необходимо понять, возможно ли существование этих кривых в реальном мире, по крайней мере согласно правилам общей теории относительности.
Ранее были перечислены несколько решений уравнения Эйнштейна, включающих замкнутые времениподобные кривые: Вселенная с циклическим временем, Вселенная Гёделя, внутренняя область рядом с сингулярностью вращающейся черной дыры и вращающийся бесконечный цилиндр. Однако ни одно из них не помогает найти способ «построить» настоящую машину времени — создать замкнутую времениподобную кривую там, где ее не было. Во Вселенной с циклическим временем, Вселенной Гёделя и Вселенной с вращающимся цилиндром подразумевается, что замкнутые времениподобные кривые существуют с самого начала.[94] Настоящий вопрос звучит так: «Можем ли мы своими силами создавать замкнутые времениподобные кривые в локальной области пространства—времени?»
Обратившись вновь к рис. 6.2, легко понять, почему все эти решения включают вращение того или иного рода: недостаточно всего лишь наклонить световые конусы, нужно «положить их на бок», выстроив в замкнутую цепочку. Итак, если сесть и подумать, как же создать в пространстве—времени замкнутую времениподобную кривую, то первым делом на ум приходит какой-нибудь вращающийся объект — если не бесконечный цилиндр или черная дыра, то, возможно, достаточно длинный цилиндр или всего лишь массивная звезда. Результат может быть еще более впечатляющим, если взять два гигантских массивных тела и запустить их навстречу друг другу с громадной относительной скоростью. А затем, если повезет, гравитационное притяжение этих тел в достаточной степени повлияет на ориентацию окружающих их световых конусов, чтобы сформировать замкнутую времениподобную кривую.
Все это как-то слишком просто. Действительно, мы немедленно сталкиваемся с различными сложностями. Общая теория относительности — сложная штука, причем не только концептуально, но и технически; уравнения, описывающие искривление пространства—времени, невероятно сложны для решения в любой ситуации, возникающей в реальном мире. Все известные нам точные предсказания теории связаны с сильно идеализированными случаями, обладающими высокой симметрией, такими как статическая звезда или совершенно однородная Вселенная. Расчет кривизны пространства—времени, образовавшейся в результате пролета двух черных дыр мимо друг друга со скоростью, близкой к скорости света, лежит за пределами наших возможностей (хотя методы расчетов улучшаются с каждым днем).
С целью сильного упрощения мы можем задать вопрос, что произойдет, если два массивных объекта пройдут близко друг от друга на высокой относительной скорости, но во Вселенной с трехмерным пространством—временем, где вместо трех измерений пространства и одного измерения времени, как в нашем реальном четырехмерном пространстве—времени, будут всего лишь два измерения пространства и одно измерение времени.
Отбрасывая для простоты одно измерение пространства, мы совершаем достойный признания шаг. Эдвин Э. Эббот в своем романе «Флатландия» описывал существ, живущих в двумерном пространстве. Он пытался показать, что и в нашем мире может быть более трех измерений, попутно высмеивая Викторианскую культуру.[95] Мы позаимствуем терминологию Эббота и будем называть Вселенную с двумя пространственными измерениями и одним временным Флатландией, даже если на самом деле она вовсе не такая плоская,[96] так как нас интересуют случаи искривления пространства—времени, когда световые конусы могут наклоняться, а времениподобные кривые — замыкаться.
Изучение машин времени во Флатландии (и в Кембридже)
Рассмотрим ситуацию, показанную на рис. 6.5: два массивных объекта с высокой скоростью проносятся мимо друг друга во Флатландии. В трехмерной Вселенной прекрасно то, что в ней уравнение Эйнштейна упрощается на несколько порядков, позволяя найти точное решение задачи, которая в реальной четырехмерной Вселенной была бы невообразимо сложной. В 1991 году астрофизик Ричард Готт закатал рукава и рассчитал искривление пространства—времени для этой ситуации. В частности, он обнаружил, что во Флатландии тяжелые объекты, проходя мимо друг друга, действительно создают замкнутые времениподобные кривые — при условии, что движутся они с достаточно высокой скоростью. Для каждого конкретного значения массы двух тел Готт рассчитал скорость, с которой те должны двигаться, чтобы в нужной степени наклонить окружающие световые конусы и предоставить возможность путешествия во времени.[97]
Рис. 6.5. Машина времени Готта во Флатландии. Если два объекта пройдут мимо друг друга с достаточно высокой относительной скоростью, то возникнет замкнутая времениподобная кривая, обозначенная на рисунке пунктирной линией. Обратите внимание, что показанная здесь плоскость на самом деле двумерная — это не проекция трехмерного пространства
Интересный результат, но это не считается за «построение» машины времени. В пространстве—времени Готта все предопределено: объекты в самом начале разнесены на большое расстояние, затем проходят в непосредственной близости друг от друга, а после этого снова разлетаются в стороны. В конечном счете замкнутые времениподобные кривые просто не могут не образоваться; во всей истории развития системы не найдется такой точки, где их появления можно было бы избежать. Итак, вопрос остается на повестке дня: можем ли мы своими руками построить машину времени Готта? Например, пусть во Флатландии есть два массивных объекта, находящихся друг относительно друга в покое. К каждому из этих объектов мы приделаем ракетные двигатели (не забывайте повторять про себя: «Это мысленный эксперимент»). Сможем ли мы придать объектам достаточно высокую скорость, чтобы это привело к образованию замкнутых времениподобных кривых? Это можно было бы заслуженно назвать построением машины времени, пусть даже в не очень реалистичных обстоятельствах.
Ответ на этот вопрос чрезвычайно интересен, и мне повезло оказаться в первых рядах зрителей, когда этот поразительный результат был достигнут.[98] В 1991 году, когда был опубликована статья Готта, я был аспирантом в Гарварде и работал в основном со своим научным руководителем Джорджем Филдом. Как и многие другие студенты Гарварда, я часто пользовался подземной линией Red Line, чтобы доехать до Массачусетского технологического института (MIT) и прослушать курсы, которых не было в моем университете (множество студентов MIT ездили в противоположную сторону по аналогичной причине). Среди интересовавших меня лекций были великолепный курс по теоретической физике элементарных частиц Эдварда (Эдди) Фари и курс по космологии ранней Вселенной Алана Гута. Эдди был молодым парнем с типичным акцентом жителей Бронкса и весьма серьезным отношением к физике (насколько это возможно для человека, работы которого носят названия вроде «Можно ли создать Вселенную в лаборатории путем квантово-механического туннелирования?»[99]). Алан — исключительно здравомыслящий физик, заслуживший мировую известность как изобретатель инфляционного сценария развития Вселенной. Оба они были дружелюбными и увлеченными людьми, ребятами, с которыми было интересно проводить время, даже когда у нас не происходило увлекательных бесед о физике.
Итак, я был счастлив и горд тем, что эти двое пригласили меня поучаствовать в поиске ответа на вопрос, можно ли построить машину времени Готта. Над той же проблемой работала еще одна команда теоретиков в составе Стэнли Дезера, Романа Джакива и нобелевского лауреата Герарда ’т Хоофта. Они открыли интересное свойство двух движущихся тел во Вселенной Готта: несмотря на то что каждый объект в отдельности перемещается со скоростью, меньшей скорости света, совокупный импульс системы, включающей оба эти объекта, такой же, как у тахиона. Словно система двух совершенно обычных частиц является новой частицей, которая движется быстрее света. В специальной теории относительности, где сила притяжения не учитывается, а пространство—время совершенно плоское, это было бы невозможно: совокупный импульс любого числа частиц, скорость которых ниже скорости света, при любых условиях будет соответствовать движению медленнее скорости света. За такой интересный результат сложения скоростей двух объектов мы должны благодарить особые свойства искривленного пространства—времени. Однако для нас это открытие еще не поставило финальную точку в вопросе; кто сказал, что особенности искривленного пространства—времени не позволяют создавать тахионы?
Мы решили добавить к условиям задачи космический корабль, для того чтобы взять объекты, движущиеся с небольшой скоростью, и разогнать их так сильно, чтобы создать машину времени. Возможно ли это? В такой формулировке ответ кажется очевидным: легко! Главное, чтобы ракета была достаточно большая и мощная.
В действительности во Вселенной попросту не хватит для этого энергии. Для начала мы решили рассматривать «открытую Вселенную» — поверхность во Флатландии, по которой двигались наши частицы, простиралась до бесконечности. Однако одной из своеобразных особенностей силы притяжения во Флатландии является существование безусловного верхнего предела на полную энергию, которая способна поместиться в открытую Вселенную. Попробуйте добавить еще немного, и пространство—время искривится настолько, что Вселенная замкнется на саму себя.[100] В четырехмерном пространстве—времени во Вселенной может находиться сколько угодно энергии; каждая порция энергии искривляет ближайшую окрестность пространства—времени, однако на большом удалении от источника эффект ослабевает. В противоположность этому в трехмерном пространстве—времени влияние силы притяжения не может ослабевать — оно лишь усиливается. Следовательно, в открытой трехмерной Вселенной существует максимальный возможный объем энергии — и его недостаточно для построения машины Готта с нуля.
Получается, Природа предусмотрела интересный способ, как избежать создания машины времени. Мы написали две статьи: в первой мы изложили разумное обоснование этого результата, ее авторами стали мы втроем. Вторая статья была написана в соавторстве с Кеном Олумом, там было представлено более общее доказательство. Однако во время поисков мы заметили кое-что очень интересное. Действительно, верхний предел энергии существует — но для открытой Вселенной Флатландии; а что насчет закрытой? Если попытаться запихнуть слишком много энергии в открытую Вселенную, то она замкнется на саму себя. Но попробуем превратить эту проблему в характерную особенность и рассмотрим закрытые Вселенные, где пространство выглядит скорее как сфера, а не как плоскость.[101] В них существует одно-единственное допустимое значение полной энергии и никакого пространства для маневров. Суммарная кривизна пространства должна быть равной кривизне сферы, а это в два раза больше, чем может поместиться в открытую Вселенную.
Мы сравнили полную энергию закрытой Вселенной во Флатландии с энергией, необходимой для создания машины времени Готта, и обнаружили, что этого количества достаточно. Это произошло уже после того, как была подготовлена и принята к публикации в Physical Review Letters, ведущем журнале в этой области, наша первая статья. Однако журналы позволяют до публикации вставлять в статьи небольшие примечания: «добавлено при проверке», и мы воспользовались этой возможностью, указав, что, вероятно, машину времени можно было бы построить в закрытой Вселенной Флатландии, несмотря на то что в открытой Вселенной это совершенно точно невозможно.
Рис. 6.6. Движущиеся частицы в закрытой Вселенной Флатландии, обладающей топологией сферы. Представьте себе муравьев, ползающих по поверхности пляжного мяча
Мы сглупили (в такой ситуации очень удобно быть молодым ученым, работающим в компании знаменитых старших коллег; ты всегда можешь оправдаться: «Если даже эти ребята пропустили такую ошибку, может быть, она и не настолько глупая»). Нам показалось забавным, что Природа так изобретательно предотвращает создание машин времени Готта в открытых Вселенных, но при этом в закрытых Вселенных, судя по всему, никаких проблем с машинами времени не существует. Определенно, в закрытой Вселенной хватит энергии, чтобы разогнать объекты до желаемых скоростей — что может пойти не так?
Очень скоро Герард ’т Хоофт выяснил, что закрытая Вселенная, в отличие от открытой, обладает конечным общим объемом (хотя, поскольку у нас только два пространственных измерения, то «конечной общей площадью», но смысл вы поняли). Он продемонстрировал, что если заставить частицы двигаться в закрытой Вселенной Флатландии таким образом, чтобы инициировать возникновение машины времени Готта, то объем Вселенной начнет очень быстро сокращаться. По сути, Вселенная стремительно помчится навстречу Большому сжатию. Как только вам на ум придет эта мысль, вы сразу же поймете, каким образом пространство—время избегает машин времени: оно схлопывается до нулевого объема еще до того, как появляются замкнутые времениподобные кривые. Уравнения не лгут; так что Эдди, Алан и я признали это и отправили в Physical Review Letters уведомление об ошибке. Научный прогресс продолжил движение вперед, пусть и получив по пути небольшое ранение.
С учетом нашего результата, описывающего открытые Вселенные, и догадки ’т Хоофта о закрытых Вселенных становится очевидно, что во Флатландии ни при каких условиях невозможно создать новую машину времени Готта, то есть машину, которой до нас там не существовало. Может показаться, что большая часть аргументов, посредством которых мы пришли к этому результату, применима только в нереалистичном случае трехмерного пространства—времени, — и это действительно так. Однако совершенно ясно, что общая теория относительности пытается донести до нас простую мысль: замкнутые времениподобные кривые ей не по нраву. Можете сколько угодно пытаться создавать их, но каждый раз что-нибудь да пойдет не так. Определенно, нам было очень интересно, насколько это заключение применимо к реальному миру с четырехмерным пространством—временем.
Кротовые норы
Весной 1985 года Карл Саган работал над своим романом «Контакт», в котором астрофизик Элли Эрроуэй (позднее ее роль в экранизации романа сыграет Джоди Фостер) осуществляет первый контакт с инопланетной цивилизацией.[102] Сагану нужно было придумать способ быстрого перемещения на космические расстояния, однако он не хотел идти по ленивому пути писателей научной фантастики и использовать варп-двигатель, который заставил бы ракету лететь быстрее света. Поэтому он поступил так, как поступил бы на его месте любой уважающий себя автор: он бросил свою героиню в черную дыру в надежде, что она выскочит, целая и невредимая, за двадцать шесть световых лет от места сброса.
Маловероятно. Бедную Элли точно не выбросило бы на безопасный берег; приливные силы, действующие вблизи сингулярности черной дыры, сделали бы из нее спагетти — весьма печальный конец. Нельзя сказать, что Саган не был осведомлен о физике черных дыр; он имел в виду вращающиеся черные дыры, где световые конусы не заставляют вас на полной скорости врезаться в сингулярность, — по крайней мере, такую возможность оставляло точное решение, обнаруженное Роем Керром еще в шестидесятых. Однако он понимал, что точно не является мировым экспертом в области черных дыр, и в своем романе старался подходить к научным вопросам со всей тщательностью. К счастью, он дружил с человеком, которого без тени сомнения можно назвать мировым экспертом в этой области, — Кипом Торном, физиком-теоретиком из Калтеха, признанным авторитетом в вопросах общей теории относительности.
Торн с большим интересом прочитал рукопись Сагана и заметил одну проблему: современные исследования указывают, что в реальном мире черные дыры ведут себя совсем не так прилично, как в первоначальном решении Керра. Настоящая черная дыра, которую можно было бы создать с помощью физических процессов в нашей Вселенной, — неважно, вращающаяся или нет, — зажевала бы бесстрашного астронавта и не выбросила бы наружу ни косточки. Но есть альтернативная идея: кротовая нора.
В отличие от черных дыр, которые практически стопроцентно существуют в реальном мире и наличие которых подтверждается огромным количеством подлинных эмпирических данных, кротовые норы — это целиком и полностью гипотетические игрушки физиков-теоретиков. Смысл кротовых нор примерно понятен из названия: они позволяют воспользоваться преимуществами динамической природы пространства—времени в общей теории относительности и соединить две разные области пространства коротким «мостом».
Рис. 6.7. Кротовая нора соединяет две удаленные области пространства. Хотя на рисунке это показать невозможно, длина «моста» в кротовой норе может быть намного меньше обычного расстояния между двумя ее устьями
Типичная кротовина показана на рис. 6.7. Плоскость символизирует трехмерное пространство, а что-то вроде трубы под ней — это и есть кротовая нора, что-то типа трубы, представляющей собой короткий путь между двумя удаленными областями пространства. Места, в которых кротовая нора соединяется с внешним пространством, называются «устьями», а сама труба — «горловиной». Она не выглядит как кратчайший путь; более того, исходя из вида картинки можно подумать, что путешествие по кротовой норе займет больше времени, чем традиционное перемещение от одного устья к другому в обычном пространстве. Однако это объясняется исключительно нашей манерой рисовать интересные искривленные пространства, погружая их в нашу скучную локально трехмерную область. Мы будем рассматривать вариант геометрии, допускающий фигуры вроде показанной на рисунке, но в которой длина кротовой норы может быть какой угодно — в том числе намного меньшей, чем расстояние между устьями в обычном пространстве.
На самом деле есть намного более интуитивно понятный способ представить себе кротовую нору. Вообразите себе обычное трехмерное пространство и «вырежьте» в нем две сферические области равного размера. Затем отождествите поверхности сфер, то есть объявите, что любой объект, входящий в первую сферу, немедленно появляется на противоположной стороне второй. Результат показан на рис. 6.8; каждая сфера представляет собой одно из устьев кротовой норы. Это кротовая нора нулевой длины; пересекая поверхность первой сферы, вы мгновенно появляетесь из второй (на слове «мгновенно» у вас в голове должен сработать сигнал тревоги: мгновенно для кого?).
Рис. 6.8. Кротовая нора в трехмерном пространстве, сформированная путем отождествления двух сфер, внутренность которых была удалена. Все, что проходит внутрь одной сферы, моментально появляется на противоположной стороне другой сферы
Кротовая нора заставляет вспомнить наш предыдущий пример с вратами во вчера. Если вы заглянете в кротовую нору с одного конца, то не увидите психоделических цветовых завихрений; вашему взору предстанет то, что фактически находится на противоположном конце, как если бы вы разглядывали этот пейзаж через своеобразный перископ (или увидели его на мониторе, подключенном к камере на другом конце кротовой норы). И вы с легкостью могли бы протянуть руку или даже прыгнуть сквозь кротовую нору, если она окажется достаточно большой.
Такой тип кротовой норы позволяет срезать путь через пространство—время, соединяя две удаленные области моментальным переходом. Он обеспечивает возможность исполнить трюк, который Сагану требовался для его романа, и по совету Торна автор переписал соответствующий раздел (в кинематографической версии, к сожалению, вы увидите и психоделические завихрения, и переливающиеся огоньки). Однако вопрос Сагана дал толчок развитию целой серии идей, результатом которых стало новаторское научное исследование, а не только точный с научной точки зрения рассказ.
Машина времени без особых затрат
Кротовая нора — это короткий путь через пространство—время; она позволяет добраться из одного места в другое намного быстрее, чем если бы вы воспользовались прямым маршрутом через обычное пространство—время. С вашей, локальной точки зрения ваша скорость никогда не превышает скорость света, однако вы добираетесь до точки назначения быстрее, чем это смог бы сделать свет в отсутствие кротовой норы. Мы знаем, что перемещения со сверхсветовой скоростью открывают нам двери к путешествиям в прошлое. Проход через кротовую нору — не в точности тот же самый, хотя и похожий процесс. В конечном счете Торн, работая совместно с Майклом Моррисом и Ульви Юртсевером, обнаружил способ, как при помощи кротовой норы создать замкнутую времениподобную кривую.[103]
Секрет заключается вот в чем: когда мы бросаемся заявлениями вроде «кротовая нора соединяет две удаленные области пространства», мы не должны забывать о том, что в действительности это означает, что она соединяет два набора событий в пространстве—времени. Представим себе, что пространство—время абсолютно плоское (за исключением кротовой норы) и что мы определили «фоновое время» в некоторой покоящейся системе координат. Отождествляя две сферы для того, чтобы создать кротовую нору, мы делаем это «одновременно» по отношению к этой конкретной координате фонового времени. В какой-то другой системе координат соответствующие моменты времени не совпадали бы.
Теперь примем серьезное допущение: разрешим себе перемещать любое из устьев кротовины независимо от противоположного. Для того чтобы оправдать такое допущение в глазах других ученых, вам пришлось бы провести немало часов в жарких спорах, но в целях нашего мысленного эксперимента все совершенно нормально. Теперь пусть одно устье так и сидит себе спокойно на траектории, соответствующей движению без ускорения, а второе мы будем перемещать туда и сюда на очень высокой скорости.
Для того чтобы понять, чем это обернется, вообразите, что и к одному и к другому устью мы прикрепили часы. Часы на стационарном устье идут с той же скоростью, что и часы, отсчитывающие координату фонового времени. Однако для часов на движущемся устье времени проходит намного меньше — так происходит в теории относительности с любым движущимся объектом. В результате, когда мы снова располагаем устья рядом друг с другом, часы на том конце, который мы перемещали с большой скоростью, здорово отстают по сравнению с часами, которые оставались на одном месте.
Попробуем рассмотреть ту же ситуацию с точки зрения наблюдателя, глядящего сквозь кротовую нору. Вспомните, что, заглянув в горловину, вы не увидите ничего пугающего — только то, что находится на противоположном конце кротовой норы. Когда мы смотрим в устье кротовой норы, нам кажется, что часы на обоих концах неподвижны друг относительно друга. Причина в том, что длина горловины всегда остается неизменной (в нашем упрощенном примере она равна нулю), даже когда мы передвигаем одно из устий. Для наблюдателя, находящегося возле кротовой норы, эти двое часов всего лишь стоят рядом друг с другом совершенно неподвижно. Следовательно, идут они абсолютно синхронно, и оба циферблата показывают точное время.
Как двое часов могут показывать одинаково точное время, если часы, прикрепленные к подвижному устью, в конце эксперимента должны сильно отставать? Легко! Когда на часы смотрит внешний наблюдатель, показания на них отличаются, а если смотреть на часы сквозь кротовую нору, то время они показывают одинаковое. Этот загадочный феномен объясняется очень просто: как только два устья начинают двигаться по разным путям через пространство—время, с точки зрения внешнего наблюдателя они больше не принадлежат одному и тому же моменту времени. Сфера, представляющая одно устье, по-прежнему отождествлена со сферой, представляющей второе устье, но теперь они отождествлены в разные моменты времени. Проходя сквозь одно устье, вы перемещаетесь в прошлое — относительно фонового времени; проходя по кротовой норе в обратную сторону, вы снова переноситесь в будущее.
Следовательно, такой тип кротовой норы абсолютно идентичен вратам во вчера. Манипулируя входами кротовой норы с коротким туннелем, мы соединили две разные области пространства—времени, «живущие» в совершенно разных временах. Теперь мы можем проходить сквозь кротовую нору и перемещаться во времени точно так же, как по замкнутым времениподобным кривым, и снова начинать беспокоиться о всевозможных парадоксах. Если бы эту процедуру можно было воспроизвести в реальном мире, то результат, несомненно, можно было бы считать построением настоящей машины времени, отвечающей требованиям из нашего предыдущего обсуждения.
Защита от машин времени
При обсуждении машины времени на основе кротовой норы создается впечатление, что замкнутые времениподобные кривые могли бы существовать в реальном мире. Казалось бы, проблема исключительно в технологических возможностях, а вовсе не в ограничениях, налагаемых законами физики. Нам всего лишь нужно найти кротовую нору, научиться удерживать ее в открытом состоянии, передвинуть одно из устьев в правильном направлении… Нет, наверное, это все же нереально. Как вы наверняка подозревали с самого начала, оказывается, что существует масса причин, почему кротовые норы нельзя рассматривать в качестве практичных инструментов построения машин времени.
Рис. 6.9. Машина времени на основе кротовой норы. Двунаправленные стрелки обозначают отождествление сферических устьев кротовой норы. Сначала устья находятся по соседству и отождествляются в один и тот же момент фонового времени. Одно устье остается неподвижным, а другое уносится в сторону со скоростью, близкой к скорости света. Когда оно возвращается, устья отождествляются в совершенно разные моменты фонового времени
Во-первых, кротовые норы не растут на деревьях. В 1967 году физик-теоретик Роберт Герош задался вопросом, насколько реально создать кротовую нору. Он доказал, что для этого необходимо не только скрутить пространство—время совершенно определенным способом, но и на одном из промежуточных шагов этого процесса создать замкнутую времениподобную кривую. Другими словами, прежде чем приступать к построению машины времени с использованием кротовой норы, нужно построить машину времени, которая позволит создать кротовую нору.[104] Однако даже если вам повезет и вы совершенно случайно наткнетесь на существующую кротовую нору, то у вас на пути встанет новое препятствие: не так-то просто удерживать ее открытой. Действительно, это считается единственным серьезным доводом, позволяющим опровергнуть возможность построения машины времени на основе кротовой норы.
Проблема в том, что для удержания кротовой норы в открытом состоянии требуется отрицательная энергия. Гравитация означает притяжение: гравитационное поле, создаваемое обычным объектом с положительной энергией, заставляет вещи притягиваться друг к другу. Но взгляните еще раз на рис. 6.8: какой эффект кротовая нора оказывает на проходящие сквозь нее частицы? Она «дефокусирует их», разделяя частицы, которые первоначально перемещались все вместе, и заставляя их двигаться в разные стороны. Это прямая противоположность традиционному поведению гравитации и знак того, что в процессе должна принимать участие отрицательная энергия.
Существует ли отрицательная энергия в природе? Вероятно, нет; по крайней мере, не в той форме, которая потребовалась бы для поддержания работоспособности макроскопической кротовой норы. Тем не менее пока что мы не можем быть в этом уверены. Высказывались предположения о том, что квантовая механика способна помочь в создании «карманов» отрицательной энергии, однако они не были подкреплены достаточными обоснованиями. Трудность в том, что этот вопрос включает как гравитацию, так и квантовую механику, а мы пока что не очень хорошо понимаем, как пересекаются эти две теории.
Однако и это еще не все; даже если бы мы нашли кротовую нору и сумели удержать ее открытой, скорее всего, она вела бы себя чрезвычайно нестабильно. Малейшее возмущение — и кротовая нора сколлапсировала бы в черную дыру. Это связано с еще одним вопросом, на который не так-то просто найти однозначный ответ, но базовая идея заключается в том, что любое крошечное возмущение энергии может увеличиваться, перемещаясь в окрестности замкнутой времениподобной кривой произвольно большое число раз. Согласно современной точке зрения, такие повторяющиеся перемещения неизбежны по крайней мере для некоторых небольших возмущений. Кротовая нора не просто чувствует массу единичной пылинки, пролетающей сквозь нее, — она ощущает это влияние снова и снова, создавая громадное гравитационное поле, размер которого достаточно велик для того, чтобы в конечном итоге разрушить нашу потенциальную машину времени.
Таким образом, природа прилагает массу усилий, для того чтобы не позволить нам построить машину времени. Накопленные косвенные улики заставили Стивена Хокинга высказать предположение, которое теперь носит название гипотезы защиты хронологии: законы физики (какими бы они ни были) запрещают создание замкнутых времениподобных кривых.[105] Мы располагаем множеством свидетельств того, что эти строки хотя бы отчасти правдивы, даже если надежных доказательств в нашем арсенале пока что нет.
Идея путешествий во времени завораживает нас — в том числе потому, что она открывает двери для парадоксов и ставит под вопрос наше понимание свободы воли. В то же время велика вероятность того, что путешествия во времени невозможны, а проблемы, связываемые с ними, по большей части надуманны (если только вы не сценарист из Голливуда — тогда они могут стать вашим хлебом). Стрела времени, с другой стороны, является неотъемлемой составляющей окружающей нас реальности, и поднимаемые ее существованием вопросы требуют ответов. Эти два явления связаны между собой: самосогласованная стрела времени во Вселенной может существовать лишь потому, что здесь нет замкнутых времениподобных кривых, а многие рассуждения, запрещающие такие кривые, порождаются их несовместимостью со стрелой времени. Отсутствие машин времени — обязательное условие, однако ни в коем случае не достаточное объяснение самосогласованности стрелы времени. Мы проделали огромную подготовительную работу, а это означает, что сейчас самое время, вооружившись вновь обретенными знаниями, пойти в прямое наступление на загадку направления времени.