Никому не дано представить в телесных образах обращение времени. Время необратимо.
Почему обсуждения энтропии и второго начала термодинамики так часто заканчиваются разговорами о еде? Вот несколько популярных (и вкусных) примеров, когда энтропия увеличивается в ходе необратимых процессов:
• вы разбиваете яйца и готовите яичницу;
• смешиваете кофе с молоком;
• проливаете вино на новый ковер;
• вынимаете пирог из духовки, и его аромат распространяется по квартире;
• кидаете кубики льда в стакан воды, и они постепенно тают.
Честно говоря, не все эти примеры одинаково аппетитны; тот, что с кубиком льда, пресноват, — хотя это легко исправить, заменив воду джином. Кроме того, пример с приготовлением яичницы требует дополнительного разъяснения. На самом деле приготовление яиц нельзя считать прямолинейной демонстрацией второго начала термодинамики. Готовка — химическая реакция, вызываемая нагреванием, и этот процесс не был бы возможен, если бы яйца не были открытыми системами. Энтропия вступает в игру, когда мы разбиваем яйца и перемешиваем белки с желтками; смысл тепловой обработки получившейся смеси в том, чтобы избежать отравления сальмонеллой, а не продемонстрировать принципы термодинамики.
Взаимоотношения между энтропией и едой основываются по большей части на таком вездесущем процессе, как смешивание. На кухне мы очень часто именно этим и занимаемся — смешиваем два вещества, которые до этого существовали сами по себе или хранились раздельно. Это могут быть как две разные формы одной и той же субстанции (лед и жидкая вода), так и два совершенно разных ингредиента (молоко и кофе, белки и желтки яиц). Первопроходцы термодинамики были чрезвычайно заинтересованы в изучении влияния тепла на различные объекты из повседневной жизни, и таяние кубика льда стало бы для них проблемой первоочередной важности. Куда меньшее любопытство у них вызвали бы процессы, в которых принимают участие ингредиенты, имеющие одинаковую температуру, например пролитое на ковер вино. Однако совершенно очевидно, что независимо от температуры между всеми этими процессами есть нечто сходное: изначально субстанции разъединены, а в конечном состоянии перемешаны между собой. Смешать вещи очень легко, а вот разъединить куда труднее. Стрела времени накладывает свой отпечаток на все, что мы делаем на кухне.
Почему смешивать ингредиенты легко, а отделять их друг от друга сложно? Когда мы смешиваем две жидкости, мы видим, как разноцветные завихрения постепенно сливаются, образуя равномерно окрашенную текстуру. Это зрелище не слишком помогает разобраться, что именно там происходит. Так что давайте вместо этого рассмотрим смешивание песка двух разных цветов. Важно то, что песок состоит из дискретных частей — отдельных песчинок. Это ни у кого не вызывает сомнения. Смешивая, например, синий песок с красным, мы получаем песок фиолетового цвета. Но это не означает, что каждая песчинка из обеих порций окрасилась в фиолетовый цвет. Песчинки сохраняют индивидуальность — синие остаются синими, а красные красными; они просто беспорядочно перемешиваются. Только если мы глядим издалека («макроскопически») смесь кажется однообразно фиолетовой; если приглядеться (посмотреть на нее «микроскопически»), мы увидим те же самые синие и красные песчинки.
Одним из величайших достижений пионеров кинетической теории — Даниила Бернулли из Швейцарии, Рудольфа Клаузиуса из Германии, Джеймса Клерка Максвелла и Уильяма Томсона из Великобритании, Людвига Больцмана из Австрии и Джозайи Уилларда Гиббса из США — было то, что они первыми стали рассматривать все жидкости и газы так, как мы только что описывали песок: как наборы крохотных кусочков, сохраняющих свои отличительные черты. Разумеется, мы не ищем в жидкостях и газах песчинки; мы знаем, что они сделаны из атомов и молекул. Однако принцип остается неизменным. Когда мы наливаем молоко в кофе, не происходит никакого чудесного объединения отдельных молекул молока с отдельными молекулами кофе, и молекулы нового вида не появляются в этой смеси. Два набора молекул просто перемешиваются. Даже тепло — это свойство атомов и молекул, а не какая-то отдельная самостоятельная жидкость. Теплота объекта — характеристика энергии быстро движущихся молекул, из которых он состоит. Когда кубик льда тает в стакане воды, молекулы не меняются. Они всего лишь сталкиваются друг с другом, вследствие чего их энергия равномерно распределяется между всеми молекулами, содержащимися в стакане.
Не давая (пока что) точного математического определения энтропии, на примере смешивания песка двух цветов мы можем показать, что перемешивать вещи значительно проще, чем разделять их обратно. Представьте себе миску, в которую насыпали песок: все синие песчинки находятся у одного бортика, а все красные у противоположного. Очевидно, что эта конфигурация достаточно специальная: если потрясти миску или помешать содержимое ложкой, то красный песок начнет смешиваться с синим. Если же с самого начала насыпать в миску смесь двух типов песка, то конфигурация будет устойчива: сколько ни перемешивай, менее разнородной смесь не станет. Причина проста: для того чтобы разделить два типа песка, нам потребуется применить намного более точное действие, чем простое потряхивание или перемешивание. Нам придется взять увеличительное стекло и аккуратно поработать пинцетом, перенося красные песчинки к одному бортику миски, а синие к другому. Для создания нестабильного специального состояния необходимо вкладывать куда больше труда, чем для создания стабильной неразберихи.
Все то же самое можно изложить с ужасающе научной количественной точки зрения — что Больцман и другие, собственно говоря, и сделали в 1870-х годах. Мы тщательно изучим результаты их работы и попробуем понять, на какие вопросы они дают ответы, а на какие нет и насколько эти ответы согласуются с основополагающими законами физики, которые, как мы знаем, полностью обратимы. Однако уже сейчас должно быть понятно, что ключевую роль здесь играет большое количество атомов, составляющих макроскопические объекты в реальном мире. Если бы у нас была только одна красная песчинка и одна синяя, то между «смешанным» и «несмешанным» состояниями никакого различия бы не было. В предыдущей главе мы говорили о том, что физические законы работают совершенно одинаково как вперед во времени, так и назад (при условии, что мы дали надлежащее определение направлению времени). Это микроскопическое описание, требующее тщательного отслеживания каждой индивидуальной составляющей системы. Однако в реальном мире, где в различных процессах участвует невообразимое количество атомов, мы попросту не в состоянии обрабатывать такие объемы информации. Нам приходится прибегать к упрощениям — рассматривать средний цвет, или температуру, или давление вместо положения и импульса каждого атома. Когда мы мыслим макроскопически, мы забываем (или отбрасываем) детальную информацию об отдельных частицах, — и здесь на сцену выходят энтропия и необратимость.
Огрубление
Главное, что мы хотим понять, — это «как макроскопические характеристики системы, состоящей из множества атомов, меняются вследствие движения отдельных атомов?» (Я буду попеременно использовать все три термина — «атомы», «молекулы» и «частицы», подразумевая примерно одно и то же, так как для нас важно лишь то, что это крохотные объекты, подчиняющиеся обратимым законам физики, и что для того, чтобы сконструировать нечто макроскопическое, нужно взять необычайно много таких объектов.) Чтобы разобраться в этом, рассмотрим герметичный контейнер, разделенный на две части перегородкой, в которой проделано отверстие. Молекулы газа летают в одной половине контейнера и чаще всего отскакивают от центральной перегородки, однако периодически часть молекул пролетает сквозь отверстие на другую половину. Можно предположить, например, что молекулы отскакивают от перегородки в 995 случаях из 1000, но полпроцента из них при каждом столкновении (которое случается, скажем, каждую секунду) умудряется пробраться в другую часть контейнера.
Рис. 8.1. Контейнер, полный молекул газа, посередине которого установлена перегородка с отверстием. Каждую секунду у каждой молекулы есть крошечный шанс пролететь сквозь отверстие на другую сторону
Этот пример весьма специфичен и тем удобен; мы можем в деталях изучить каждый вариант развития событий и описать, что при этом происходит.[127] Про каждую молекулу в левой половине контейнера мы можем сказать, что каждую секунду с вероятностью 99,5 % она останется в своей половине, а с вероятностью 0,5 % переместится в противоположную; то же самое верно для правой половины контейнера. Это правило абсолютно инвариантно относительно обращения времени: если снять на пленку движение произвольной частицы, подчиняющейся этому правилу, то при просмотре фильма невозможно будет сказать, вперед или назад по времени воспроизводится запись. На уровне отдельных частиц прошлое и будущее совершенно идентичны.
На рис. 8.2 мы изобразили один из возможных вариантов; как всегда, значение времени увеличивается снизу вверх. В контейнере 2000 «молекул воздуха», и в момент времени t = 1 в левой части находится 1600 молекул, а в правой — только 400. (Пока что вы не должны спрашивать, почему первоначальная конфигурация выбрана именно такой, хотя позже, когда мы заменим «контейнер» на «Вселенную», мы начнем задавать подобные вопросы.) Итак, мы наблюдаем за молекулами, летающими внутри контейнера и отскакивающими от стенок, и то, что происходит далее, нас совсем не удивляет. Каждую секунду любая молекула с небольшой вероятностью может перелететь на другую половину, но поскольку в самом начале в одной части контейнера существенно больше молекул, чем в другой, в целом наблюдается тенденция к выравниванию. (В точности как с температурами в формулировке второго начала термодинамики, предложенной Клаузиусом.) Пока в левой части контейнера молекул больше, общее количество молекул, пролетающих сквозь отверстие слева направо, превышает количество молекул, перемещающихся в обратном направлении. Через 50 секунд мы увидим, что количества молекул в обеих частях начинают выравниваться, а через 200 секунд они станут практически равными.
Очевидно, что этот контейнер — еще одна иллюстрация существования стрелы времени. Даже если бы мы не указали моменты времени на различных конфигурациях, показанных на рисунке, большинство людей без труда угадали бы, что было в начале, а чем все закончилось. Нас не удивляет тот факт, что концентрация молекул воздуха выравнивается, но мы бы были поражены, если бы все (или почти все) молекулы внезапно собрались в одной половине контейнера. «Прошлое» — это с той стороны стрелы времени, где объекты находятся в более разделенном состоянии, тогда как «будущее» — это там, где они перемешались, а их концентрация выровнялась. То же самое происходит, когда вы наливаете в чашку кофе ложку молока и две жидкости смешиваются.
Рис. 8.2. Поведение 2000 молекул газа в контейнере с перегородкой. В самом начале 1600 молекул находятся в левой части контейнера и 400 молекул — в правой. Через 50 секунд в левой половине остается около 1400 молекул, а в правой их число уже составляет 600. По истечении 200 секунд молекулы равномерно распределены между двумя половинами контейнера
Конечно же, это всего лишь статистическая картина, а не абсолютная действительность. Я хочу сказать, что вполне вероятна ситуация, когда вначале слева и справа в контейнере будет одинаковое число молекул, а потом по удивительному стечению обстоятельств большинство частиц соберется в какой-то одной половине, образовав очень неравномерное распределение. Как мы увидим далее, вероятность такого исхода невелика, и чем больше частиц участвуют в процессе, тем она ниже; тем не менее нельзя сбрасывать ее со счетов. Однако пока что мы можем смело игнорировать такие редкие события и сконцентрироваться на наиболее вероятном варианте эволюции системы.
Энтропия по Больцману
Нам хотелось бы сделать нечто большее, чем просто заявить: «Вполне очевидно, что молекулы, скорее всего, будут перемещаться до тех пор, пока равномерно не распределятся по объему». Мы хотели бы уметь обосновывать это ожидание и заменять выражения типа «скорее всего» и «равномерно распределятся» строгими количественными характеристиками. Этим занимается раздел науки под названием «статистическая механика». Повторяя бессмертные слова Питера Венкмана: «С дороги, человек, я ученый!»
Первой крупной догадкой Больцмана было осознание того факта, что у молекул есть гораздо больше способов равномерно (более или менее) распределиться по объему контейнера, чем всем вместе скопиться у одной из его стенок. Представьте себе, что мы подсчитали имеющиеся молекулы и навесили на них номера от 1 до 2000. Нам интересно, сколько существует способов организовать молекулы так, чтобы в левой и правой половинах контейнера оказалось ровно требуемое число молекул. Например, сколько есть способов поместить 2000 молекул в левую часть и 0 в правую? Ровно один. Мы следим только за тем, в какой половине контейнера находится каждая молекула, и нас не интересуют ее точное положение и импульс, поэтому мы всего лишь берем и помещаем каждую молекулу в левую часть контейнера.
Теперь попробуем ответить на вопрос: сколькими способами можно поделить молекулы так, чтобы в левой части оказалось 1999 молекул, а в правой — ровно одна? Ответ: двумя тысячами способов, по одному на каждую молекулу, которой посчастливилось попасть в правую половину. А если мы хотим, чтобы в правой части всегда находилась пара молекул? Это можно сделать 1 999 000 способов. И в конце концов, если мы обнаглеем поместить в правую половину три молекулы, оставляя в левой 1997, то обнаружим, что вариантов такого размещения молекул целых 1 331 334 000.[128]
Очевидно, что эти числа увеличиваются очень быстро: 2000 намного больше 1, 1 999 000 намного больше 2000, а 1 331 334 000 еще больше. По мере того как мы в ходе своего мысленного эксперимента перемещаем все больше и больше молекул в правую половину, опустошая левую, они продолжают возрастать, а затем в определенный момент начинают уменьшаться. В конце концов, задавшись вопросом, много ли существует способов поместить все 2000 молекул в правую часть контейнера, оставив в левой ровно ноль, мы вновь вернемся к единственному уникальному варианту такой конфигурации.
Ситуация, соответствующая наибольшему числу всевозможных конфигураций, — очевидно, та, когда в каждой половине контейнера находится ровно по 1000 молекул. Создать такую конфигурацию можно… в общем, очень большим количеством способов. Мы не будем приводить точное число; скажем только, что оно примерно равно 2 ∙ 10600 — двойка, за которой следует шестьсот нулей. И это всего лишь для двух тысяч частиц. Попробуйте вообразить приблизительное число возможных конфигураций атомов в комнате с обычным объемом воздуха или даже в стакане воды (предмет, который можно удержать в руке, состоит где-то из 6 ∙ 1023 молекул — это число Авогадро). Возраст Вселенной — всего лишь около 4 ∙ 1017 секунд, так что можете представить себе, как быстро вам придется двигать молекулы туда и сюда, для того чтобы изучить все возможные допустимые конфигурации.
Все это наводит на определенные мысли. Существует относительно немного способов собрать все молекулы в одной половине контейнера, но огромное число вариантов более или менее равномерного распределения их по доступному пространству. К тому же разумно ожидать, что очень неравномерное распределение с легкостью будет переходить в относительно равномерное, но не наоборот. Эти заявления похожи, но не эквивалентны. Следующим шагом Больцмана было предположение о том, что если у нас нет какой-то особой информации о состоянии системы, то следует предполагать, что она будет переходить от «специальных» конфигураций к «общим», то есть от ситуаций, соответствующих относительно небольшому числу вариантов расположения частиц, к ситуациям, соответствующим множеству способов их расположения.
Размышляя подобным образом, Больцман ставил целью объяснить на атомном уровне второе начало термодинамики — утверждение, что энтропия в замкнутой системе всегда увеличивается (или остается постоянной). Формулировки второго начала уже были даны Клаузиусом и другими учеными, однако Больцман хотел вывести их из некоего простого набора базовых принципов. Вы уже заметили, что статистическое мышление движет нас в правильном направлении: заявление о том, что «развитие систем происходит от специальных конфигураций к общим», весьма похоже на «развитие систем происходит от конфигураций с низкой энтропией к конфигурациям с высокой энтропией».
Таким образом, напрашивается определение энтропии как «количества перестановок микроскопических частей системы, при которых ее макроскопическое состояние не меняется». В нашем примере с перегородкой внутри контейнера это соответствует количеству способов разместить отдельные молекулы внутри сосуда так, чтобы общее число молекул в каждой половине осталось неизменным.
Мы почти подобрались к верному ответу, но все же не совсем. В действительности пионерам термодинамики было известно об энтропии не только то, что «она обычно увеличивается». Например, они знали, что если взять две разные системы и заставить их взаимодействовать, то общая энтропия будет равна простой сумме отдельных энтропий этих двух систем. Энтропия аддитивна, точно так же, как число частиц (в отличие, например, от температуры). Однако количество конфигураций совершенно точно свойством аддитивности не обладает: если соединить два контейнера с газом, то общее количество способов реорганизации молекул в двух контейнерах станет во много раз больше, чем в пределах одной емкости.
Больцману удалось справиться с задачей формулировки определения энтропии в терминах микроскопических перестановок. Мы будем использовать букву W (от немецкого Wahrscheinlichkeit — «вероятность») для обозначения количества перестановок микроскопических составляющих системы без изменения ее макроскопических свойств. Последним шагом Больцмана было взятие логарифма от W и объявление о том, что результат пропорционален энтропии.
Слово «логарифм» звучит очень по-научному, но это всего лишь способ показать, как много цифр понадобится для написания числа. Если число представляет собой степень 10, то его логарифм равен всего лишь этой степени,[129] то есть логарифм 10 равен 1, логарифм 100 равен 2, логарифм 1 000 000 равен 6 и т. д.
В приложении мы более подробно обсудим некоторые математические тонкости. Они не очень важны для составления глобальной картины; если вы притворитесь, что не замечаете слова «логарифм», то ничего особо не потеряете. В действительности важно знать только лишь две вещи:
• по мере увеличения чисел возрастают и их логарифмы;
• но не слишком быстро; сами числа становятся неимоверно больше, однако их логарифмы увеличиваются довольно медленно. Один миллиард намного больше тысячи, однако 9 (логарифм миллиарда) не сильно больше 3 (логарифм 1000).
Когда дело доходит до огромных чисел, например таких, с которыми мы сталкиваемся в этой игре, последнее свойство здорово нам помогает. Поделить 2000 частиц поровну можно 2∙10600 способов — просто невообразимое число! Но логарифм этого числа равен всего лишь 600,3 — с этим еще можно иметь дело.
Формула Больцмана для энтропии, традиционно обозначаемой буквой S (букву E мы использовать не хотим, потому что она обычно обозначает энергию), гласит, что энтропия равна произведению некоторой константы k, которая называется постоянной Больцмана, на логарифм W, где W — число микроскопических состояний системы, неразличимых с макроскопической точки зрения.[130] Таким образом,[131]
S = k lg W.
Это, без сомнения, одно из важнейших уравнений за всю историю науки — триумф физики XIX века, которое можно поставить в один ряд с ньютоновским описанием динамики в XVII веке и революционными открытиями в области теории относительности и квантовой механики в двадцатом. Посетив могилу Больцмана в Вене, вы увидите, что это уравнение выгравировано на его надгробном камне (см. главу 2).[132]
Взятие логарифма избавляет нас от основной проблемы, а формула Больцмана приводит как раз к тем свойствам, которые разумно ожидать от такого явления, как энтропия. В частности, полная энтропия двух систем после объединения равна всего лишь сумме энтропий этих систем. Это обманчиво простое уравнение обеспечивает количественную связь между микроскопическим миром атомов и макроскопическим миром, который мы видим вокруг себя.[133]
Контейнер с газом возвращается
Для примера мы могли бы вычислить энтропию показанного на рис. 8.2 контейнера с газом, внутри которого есть перегородка с небольшим отверстием. Наша макроскопическая наблюдаемая — это полное количество молекул в левой или правой половине контейнера (нам неизвестно, что это за молекулы, где они находятся и какие у них импульсы). Величина W в данном примере — это всего лишь число способов распределить 2000 частиц между двумя половинами контейнера так, чтобы их количество в каждой половине оставалось постоянным. Если слева 2000 частиц, то W равно 1, а lg W равен 0. Еще несколько вариантов перечислено в табл. 8.1.
Таблица 8.1. Количество расположений W и логарифм этого значения, вычисленные для контейнера с 2000 частицами, часть из которых находится слева от перегородки, а часть — справа
Число частиц слева/справа | W | lgW
2000/0 | 1 | 0
1999/1 | 2000 | 3,3
1998/2 | 1999000 | 6,3
1997/3 | 1331334000 | 9,1
… | … | …
1000/1000 |2*10600 | 600,3
… | … | …
3/1997 | 1331334000 | 9,1
2/1998 | 1999 000 | 6,3
1/1999 | 2000 | 3,3
0/2000 | 1 | 0
На рис. 8.3 представлено изменение энтропии (в определении Больцмана) со временем в нашем контейнере с газом. Я перемасштабировал график так, чтобы максимальное значение энтропии контейнера равнялось 1. Начальное значение энтропии относительно невелико — оно соответствует первой конфигурации на рис. 8.2, где в левой части контейнера находится 1600 молекул, а в правой — только 400. По мере того как молекулы постепенно просачиваются сквозь отверстие в центральной перегородке, энтропия увеличивается. Это лишь один пример эволюции системы; поскольку наш «закон физики» (каждую секунду у каждой частицы есть 0,5-процентная вероятность попасть на другую сторону) включает вероятностную составляющую, движение системы в разных экспериментах неизбежно будет отличаться в деталях. Однако в подавляющем большинстве случаев энтропия все же будет увеличиваться, поскольку система тяготеет к макроскопическим конфигурациям, соответствующим большему числу микроскопических расстановок. Второе начало термодинамики в действии.
Рис. 8.3. Увеличение энтропии в контейнере с перегородкой, содержащем молекулы газа. Вначале большая часть молекул сосредоточена в левой половине, но со временем распределение выравнивается (см. рис. 8.2). Соответственно увеличивается и энтропия, поскольку существует гораздо больше способов равномерно поделить молекулы между двумя отсеками контейнера, чем собрать их все с одной или с другой стороны. Для удобства мы показываем энтропию в единицах ее максимального значения, которое на данном графике равно единице
Согласно Больцману и коллегам, это и есть источник стрелы времени. Сначала у нас имеется лишь набор микроскопических законов физики, инвариантных относительно обращения времени: для них прошлое и будущее неразличимы. Однако мы имеем дело с системами, включающими огромное количество частиц, для полного описания состояния которых нам не требуется отслеживать каждую деталь — мы следим лишь за некоторыми поддающимися наблюдению макроскопическими величинами. Энтропия — это мера числа микроскопических состояний, неразличимых с точки зрения макроскопического наблюдателя (и под этим заявлением мы подразумеваем, что она пропорциональна логарифму этого числа). В предположении, что система развивается по направлению к макроскопическим конфигурациям, соответствующим большему количеству возможных состояний, естественно говорить о том, что со временем энтропия увеличивается.
В частности, было бы очень странно, если бы она внезапно уменьшилась. Стрела времени появляется потому, что система (или Вселенная) с течением времени естественным образом переходит от редких конфигураций к более общим.
Все это на первый взгляд кажется весьма правдоподобным, и в конечном итоге мы убедимся, что это действительно так. Но в ходе наших рассуждений мы сделали несколько «обоснованных» логических скачков, заслуживающих более тщательного рассмотрения. В оставшихся разделах этой главы мы прольем свет на различные предположения, которые необходимо сделать для больцмановской интерпретации энтропии, и попробуем решить, насколько они оправданны.
Полезная и бесполезная энергия
У нашего примера с контейнером газа есть интересная особенность: стрела времени там — явление временное. После того как концентрация газа выравнивается (примерно в момент времени t = 150 на рис. 8.3), ничего больше не происходит. Отдельные молекулы продолжают перелетать из левой половины в правую и обратно, но число таких молекул взаимно компенсируется, и большую часть времени количество молекул слева и справа будет одинаково. Это конфигурации, соответствующие наибольшему числу расстановок отдельных молекул, в которых система соответственно обладает наибольшей энтропией.
Система, обладающая максимально возможной энтропией, находится в равновесии. Когда наступает состояние равновесия, системе становится некуда двигаться дальше; такая конфигурация для нее наиболее естественна. В равновесной системе стрела времени отсутствует, так как энтропия не увеличивается (и не уменьшается). Для макроскопического наблюдателя система в равновесии предстает статичной, не меняющейся.
Ричард Фейнман в своей лекции «Характер физических законов» рассказывает историю, иллюстрирующую концепцию равновесия.[134] Представьте себе, что вы сидите на пляже и внезапно на вас обрушивается ливень. Вы принесли с собой полотенце, но пока вы успеваете добежать до укрытия, оно также промокает. Оказавшись под крышей, вы начинаете вытираться полотенцем. Какое-то время это работает, потому что полотенце промокло чуть меньше, чем вы. Тем не менее вскоре вы обнаруживаете, что оно пропиталось влагой и вы, вытираясь им, настолько же быстро смачиваете свою кожу, насколько быстро стираете с нее капли воды. Вы с полотенцем достигли состояния «равновесия влажности», и оно уже не может высушить вас. Это состояние, в котором число способов разместить молекулы воды на вас и на вашем полотенце максимально.[135]
После достижения состояния равновесия полотенце становится непригодным для достижения первоначальной цели (обсушиться). Обратите внимание, что когда вы вытираетесь, полный объем воды не меняется — она просто переходит с вас на полотенце. Аналогично, в контейнере с газом, изолированном от внешнего мира, полная энергия не меняется; она остается постоянной, по крайней мере в ситуациях, когда расширением пространства можно пренебречь. Однако энергия может быть распределена так, чтобы приносить какую-то пользу, а может быть и бесполезной. Когда энергия находится в конфигурации с низкой энтрпией, ее можно использовать для совершения работы. Но тот же объем энергии в состоянии равновесия абсолютно бесполезен. Энтропия — это также мера бесполезности конфигурации энергии.[136]
Снова вернемся к нашему контейнеру с перегородкой. Но на этот раз пусть это будет не перегородка с отверстием, жестко зафиксированная внутри контейнера и лишь позволяющая некоторой части молекул пролетать из одной его половины в другую, а сплошная подвижная пластина, прикрепленная к стержню, выходящему за пределы контейнера. То, что мы сейчас описали, — всего лишь обыкновенный поршень, с помощью которого при определенных обстоятельствах можно производить работу.
На рис. 8.4 показаны две разные ситуации, в которых может оказаться наш поршень. Вверху проиллюстрирована конфигурация с низкой энтропией: все молекулы газа находятся с одной стороны от перегородки. Внизу изображена ситуация с высокой энтропией: с обеих сторон от перегородки находятся равные объемы газа. Полное количество молекул и полная энергия одинаковы в обоих случаях; отличается только энтропия. Также очевидно, что развиваться события в этих двух случаях будут совершенно по-другому. В случае, представленном в верхней части рисунка, весь газ находится с левой стороны от поршня. Сила молекул, ударяющихся о перегородку, оказывает давление, которое выталкивает поршень до тех пор, пока газ не заполнит весь объем контейнера. Подвижный стержень поршня можно использовать для выполнения полезной работы, например кручения маховика (по крайней мере, в течение какого-то небольшого промежутка времени). При этом расходуется энергия газа, поэтому в конце процесса его температура станет ниже. (Поршни в двигателе вашего автомобиля работают точно так же, расширяя и охлаждая горячие газы — продукты сгорания паров бензина; эта полезная работа и приводит автомобиль в движение.)
В нижней части рисунка показан процесс, в котором первоначальная энергия такая же, но энтропия намного выше: по обеим сторонам перегородки находится одинаковое количество частиц. Высокая энтропия подразумевает равновесие, что, в свою очередь, свидетельствует о бесполезности энергии. И действительно, мы видим, что поршень не движется. Давление газа с одной стороны перегородки компенсируется давлением с другой стороны. Полная энергия газа в этом контейнере равна полной энергии в контейнере, изображенном в левом верхнем углу, однако в данном случае мы не можем воспользоваться ею в своих целях, например заставить газ передвинуть поршень и помочь нам сделать что-то полезное.
Рис. 8.4. Газ в разделенном сплошной перегородкой контейнере, применяемый для приведения в движение поршня. Вверху газ в состоянии с низкой энтропией выталкивает поршень вправо, производя полезную работу. Внизу газ в состоянии с высокой энтропией никак не влияет на положение поршня
Этот пример помогает нам понять связь между взглядом Больцмана на энтропию и мнением Рудольфа Клаузиуса, который впервые сформулировал второе начало термодинамики. Вспомните, что Клаузиус и его предшественники вообще не думали об энтропии в терминах атомов, они рассматривали ее как независимую субстанцию с собственной динамикой. В исходной версии второго начала термодинамики энтропия даже не упоминалась; это было всего лишь утверждение о том, что «теплота не может спонтанно начать течь от более холодного объекта к более горячему». Когда контактируют два объекта с разной температурой, их температуры постепенно изменяются по направлению к некоторому равновесному значению между ними. Если же в контакте находятся два объекта с одинаковой температурой, то с ними ничего не происходит (так как они уже находятся в температурном равновесии).
С точки зрения физики атомов все это также имеет смысл. Возьмем классический пример соприкосновения двух объектов с разной температурой: кубик льда в стакане теплой воды (о котором мы говорили в конце прошлой главы). И кубик льда, и жидкость состоят из совершенно одинаковых молекул, а именно H2O. Единственное различие заключается в том, что температура льда намного ниже. Как мы уже говорили выше, температура — это мера средней энергии движения молекул в веществе. Таким образом, молекулы жидкой воды двигаются относительно быстро, а молекулы льда — медленно.
Однако такой тип условий — два набора молекул, в одном из которых молекулы движутся быстро, а в другом медленно, концептуально почти не отличается от двух наборов молекул, заключенных в контейнере по разные стороны от перегородки. В любом случае присутствуют макроскопические ограничения на перестановки микроскопических частей этих систем. Если бы у нас был только стакан воды, имеющей постоянную температуру, мы могли бы заменять молекулы в одной части стакана молекулами из какой-то другой его части, и с макроскопической точки зрения никаких различий при этом мы бы не увидели. Но если в воде плавает кубик льда, то нельзя запросто поменять местами молекулы льда и молекулы обычной воды — при этом кубик льда начал бы двигаться, и мы заметили бы это даже со своей макроскопической точки зрения. Деление молекул воды на «жидкость» и «лед» накладывает серьезные ограничения на число доступных перестановок, поэтому данная конфигурация обладает низкой энтропией. По мере того как температура молекул воды, составлявших в начале эксперимента ледяной кубик, и температура «жидкой» воды в стакане выравниваются, энтропия возрастает. Правило Клаузиуса о тенденции к выравниванию температур и о том, что теплота не может спонтанно течь от холодного объекта к горячему, абсолютно эквивалентно утверждению, что энтропия, как ее определил Больцман, в замкнутой системе никогда не уменьшается.
Ничто из этого, разумеется, не означает, что охладить объект невозможно. Однако в повседневной жизни с учетом того, что большинство вещей вокруг нас имеют одинаковую температуру, это требует большей изобретательности, чем нагревание. Холодильник — куда более сложное устройство, чем плита (работа холодильника основывается на том же базовом принципе, что и работа поршня, показанного на рис. 8.4: двигатель устройства расширяет газ, забирая у него энергию и таким образом охлаждая его). Когда Гранту Ачатцу, шеф-повару чикагского ресторана «Alinea», потребовалось устройство, которое умело бы быстро охлаждать продукты — точно так же, как поставленная на огонь сковорода мгновенно нагревает их, для создания такой машины ему пришлось объединить усилия с Филипом Престоном, технологом, специализирующемся на кухонном оборудовании. Результатом их совместной работы стала «антисковорода» — устройство размером с микроволновую печь, металлическая верхняя поверхность которого имеет температуру –34 °C. Если вылить на эту «антисковороду» горячее пюре или соус, то нижний его слой мгновенно замерзнет, а верхняя часть останется мягкой. Мы уже давно усвоили основы термодинамики, но продолжаем изобретать новые способы применения науки для облегчения собственной жизни.
Не зацикливайтесь на деталях
В пятницу вечером вы выбрались с друзьями в клуб поиграть в бильярд. Сейчас мы говорим о бильярде из реального мира, а не о «бильярде физиков», в котором мы пренебрегаем трением и шумом.[137] Один из ваших друзей только что эффектно разбил пирамиду. Раскатившиеся по столу шары остановились, вы принялись обдумывать свой следующий удар, и вдруг проходящий мимо незнакомец восклицает: «Ух ты! Это невероятно!»
В недоумении вы спрашиваете, что же тут невероятного, и слышите в ответ: «Вы только посмотрите: все эти шары оказались ровно в этих точках на столе! Какова вероятность того, что вам когда-либо удастся расположить их в точности таким же образом? Да вы не сможете повторить этого и за миллион лет!»
От загадочного незнакомца попахивает безумием — наверное, он немного свихнулся, читая слишком много философских трактатов об основах статистической механики. Однако в его словах есть определенный смысл. На столе с несколькими шарами появление любой заданной конфигурации крайне маловероятно. Представьте, что вы запустили биток в группу случайным образом расставленных по столу шаров, а они, покатавшись туда-сюда, остановились ровно в тех же точках, в которых находились до удара. Увидев такое, вы были бы поражены до глубины души! Однако вероятность данной конфигурации (конечные положения в точности совпадают с начальными) не больше и не меньше вероятности любого другого расположения шаров на столе.[138] Имеем ли мы право выделять ее на фоне других, называя «поразительной» или «невероятной», а все остальные именовать «непримечательными» или «случайными»?
Этот пример превосходно иллюстрирует центральный вопрос больцмановского определения энтропии и понимания второго начала термодинамики: кто решает, можно ли считать два данных микроскопических состояния системы одинаковыми с нашей, макроскопической, точки зрения?
Формула для энтропии, выведенная Больцманом, основывается на величине W, которую мы определили как «количество способов разместить микроскопические составляющие системы так, чтобы ее макроскопический образ не изменился». В предыдущей главе мы определили «состояние» физической системы как полный набор информации, необходимой для однозначного описания ее движения с течением времени; в классической механике это положения и импульсы всех составляющих систему частиц. Теперь, когда мы рассматриваем статистическую механику, удобно использовать термин «микросостояние», подразумевая точное состояние системы, в противоположность «макросостоянию», включающему лишь те характеристики, которые поддаются наблюдению с макроскопической точки зрения. В этом случае можно дать величине W краткое определение: число микросостояний, соответствующих данному макросостоянию.
Для контейнера с газом, разделенного перегородкой на две половины, микросостоянием в любой момент времени является список положений и импульсов всех молекул газа. Однако нас интересовало только, сколько молекул находится слева от перегородки, а сколько — справа. Неявным образом каждый вариант деления группы молекул на части — сколько-то слева, а оставшиеся справа — определял «макросостояние» контейнера. А когда мы вычисляли значения W, мы всего лишь подсчитывали количество микросостояний, соответствующих данному макросостоянию.[139]
Раньше решение не отслеживать ничего, кроме количества молекул в каждой половине контейнера, казалось нам совершенно безобидным. Но мы могли бы следить и за массой других параметров. Имея дело с атмосферой в настоящей комнате, мы можем учитывать намного больше параметров, чем просто количество молекул в каждой части помещения: например, отслеживать температуру, плотность и атмосферное давление в каждой точке комнаты или, по крайней мере, в некотором наборе точек. Если в атмосфере содержится смесь газов, то мы могли бы по отдельности следить за плотностью и другими параметрами каждого из газов. В любом случае, объем информации, которым нам пришлось бы при этом манипулировать, все равно был бы намного меньше, чем если бы мы записывали положения и импульсы всех молекул в комнате. Тем не менее процедура выбора, какую информацию относить к макроскопическим характеристикам, а какую отбрасывать как несущественную составляющую микросостояния, определена недостаточно четко.
Процесс деления пространства микросостояний какой-то физической системы (газ в контейнере, стакан воды или Вселенная) на наборы, которые мы помечаем как «макроскопически неразличимые», называется «огрублением». Это такая черная магия, играющая критически важную роль в наших рассуждениях об энтропии. Рисунок 8.5 демонстрирует, как она работает: мы всего лишь делим пространство всех состояний системы на области (макросостояния), которые с точки зрения макроскопического наблюдателя кажутся одинаковыми. Каждая точка внутри любой такой области соответствует одному из микросостояний, а энтропия, связанная с данным микросостоянием, пропорциональна логарифму площади этой области, которому это микросостояние принадлежит (в действительности не площади, а объема, так как мы говорим о чрезвычайно многомерном пространстве). При взгляде на подобную схему становится очевидно, почему энтропия имеет тенденцию к увеличению: как правило, система развивается по направлению от состояний с низкой энтропией, соответствующих крошечной части пространства состояний, к состояниям из объемных областей, с которыми связаны большие значения энтропии.
Рис. 8.5. Процедура огрубления представляет собой разделение пространства всех возможных микросостояний на области, считающиеся неразличимыми с макроскопической точки зрения, — макросостояния. С каждым макросостоянием связано значение энтропии, пропорциональное логарифму объема этого макросостояния в пространстве состояний. Размер областей с низкой энтропией увеличен в целях наглядности; в действительности они чрезвычайно малы по сравнению с областями с высокой энтропией
Рисунок 8.5 не масштабирован; если бы мы хотели представить реальную систему, то макросостояния с низкой энтропией занимали бы намного меньшую площадь по сравнению с площадью, отведенной под макросостояния с высокой энтропией. Как мы убедились на примере с поделенным на две части контейнером, количество микросостояний, соответствующих макросостояниям с высокой энтропией, куда больше количества микросостояний, определяющих макросостояния с низкой энтропией. Нет ничего удивительного в том, что система с низкой начальной энтропией перейдет в более объемные области пространства состояний, к макросостояниям с высокой энтропией. Если же вначале система обладает высокой энтропией, то она может очень долго блуждать по пространству состояний, не встречая при этом областей с низкой энтропией. Вот что мы имеем в виду, говоря, что система находится в равновесии: она не находится в статическом микросостоянии, просто никогда не выходит из области, соответствующей макросостоянию с высокой энтропией.
Все эти рассуждения могут показаться вам нелепыми. Два микросостояния принадлежат одному и тому же макросостоянию, если они макроскопически неразличимы. Но это всего лишь один из способов сказать: «…когда мы не можем отличить одно от другого, основываясь на своих макроскопических наблюдениях». Именно это «мы» и должно вызывать у вас тревогу. Почему вообще мы приплели сюда какие-то свои способности? Мы говорим об энтропии как о характеристике всего мира, а не как об одной из сторон нашего умения воспринимать мир. Два стакана воды находятся в одном и том же макросостоянии, если весь объем воды в них имеет одинаковую температуру, даже если распределения положений и импульсов молекул воды в них отличаются, потому что мы не можем непосредственно измерить эти величины. Однако представьте себе, что нам встретилась раса супернаблюдательных инопланетян, способных впериться взором в толщу воды и увидеть положения и импульсы каждой заключенной там молекулы. Неужели эта раса вправе будет заявить, что энтропии вообще не существует?
Ученые, работающие в области статистической механики, пока что не признали единственно верным ни один из возможных ответов на озвученные выше вопросы (если бы это произошло, то мы бы только его и рассматривали). Давайте обсудим пару мнений.
Прежде всего, многие считают, что это вообще не важно. То есть вам-то может быть очень даже важно, как именно вы будете объединять микросостояния в макросостояния в целях какой-то конкретной актуальной для вас физической задачи, но в конечном итоге не имеет значения, как вы сделаете это, если единственная ваша цель — доказать истинность какого-то утверждения вроде второго начала термодинамики. Если посмотреть на рис. 8.5, станет понятно, почему второе начало термодинамики работает: в пространстве состояний гораздо больший объем отведен под состояния с высокой энтропией, чем с низкой, поэтому если мы начнем путешествие из последнего состояния, нет ничего удивительного в том, что в итоге мы окажемся в первом. Однако так будет всегда, независимо от того, как мы отсортируем микросостояния. Второе начало термодинамики непоколебимо; оно зависит от определения энтропии как логарифма от некоего объема внутри пространства состояний, но не от точного способа выбрать этот объем. Как бы то ни было, на практике из множества альтернатив мы выбираем что-то одно, поэтому такая прозрачная попытка избежать прямого ответа не может нас полностью удовлетворить.
Второе мнение заключается в том, что выбор — как именно провести огрубление — не может быть абсолютно произвольным и зависящим от человека, даже если без определенной степени предвзятости не обойтись. Действительно, мы сортируем микросостояния естественным, на наш взгляд, образом, учитывая реальные физические условия, а не собственные прихоти. Например, наблюдая за температурой и давлением в стакане воды, мы отбрасываем ту информацию, получить которую можно лишь путем изучения содержимого данного стакана под микроскопом. Мы определяем средние свойства в относительно небольших областях пространства, потому что так работают наши органы чувств. Определившись с доступными критериями огрубления, мы получаем относительно хорошо определенный набор поддающихся макроскопическому наблюдению величин.
Усреднение величин в небольших областях пространства — это не случайный метод и не специфическая особенность функционирования человеческих органов чувств в противоположность органам чувств гипотетических инопланетян. Это совершенно естественный подход с учетом того, как работают законы физики.[140] Когда я среди нескольких чашек кофе отмечаю те, куда только что вылили ложку молока, и те, в которых молоко уже хорошенько перемешали с основным содержимым, мои решения, к какой категории «состояний кофе» отнести ту или иную чашку, не случайны; я руководствуюсь тем, как кофе, с моей точки зрения, выглядит — непосредственно и феноменологически. Итак, даже если, в принципе, наш подход к огрублению микросостояний в макросостояния кажется абсолютно произвольным, в действительности мудрая природа одарила нас умением делать это правильно и разумно.
Прокрутка энтропии в обратную сторону
У сформулированного Больцманом статистического определения энтропии есть одно примечательное следствие: второе начало термодинамики не абсолютно, а всего лишь описывает сценарий развития, вероятность наступления которого существенно выше всех остальных. Если взять систему, находящуюся в макросостоянии с энтропией средней величины, почти все микросостояния, составляющие это макросостояние, будут развиваться в сторону увеличения энтропии, однако найдется некоторое незначительное число микросостояний, эволюция которых пойдет в противоположную сторону.
Это утверждение несложно проиллюстрировать. Снова представьте себе контейнер с газом. Пусть энтропия газа в начальный момент времени очень низкая — все молекулы собрались в центре сосуда. Если просто понаблюдать за развитием событий, то мы увидим, как молекулы летают туда и сюда, сталкиваются друг с другом и со стенками контейнера и в итоге (с громадной вероятностью) формируют конфигурацию с намного более высокой энтропией.
Теперь рассмотрим одно конкретное микросостояние газа в какой-то момент времени после того, как энтропия внутри контейнера стала высокой. Из него сконструируем новое состояние: сохраним положения всех молекул, но скорости заменим на противоположные. Полученное микросостояние также будет обладать высокой энтропией, ведь оно входит в то же макросостояние, с которого мы начали (если кто-то внезапно поменяет направления движения всех молекул воздуха вокруг вас на противоположные, вы этого даже не заметите; в среднем в любом направлении движется примерно одинаковое число молекул). Начиная с этого состояния каждая молекула «пройдет по своим следам» обратно, то есть их движение будет происходить по тому же пути, по которому они пришли из состояния с низкой энтропией, но в обратную сторону. Для внешнего наблюдателя это будет выглядеть так, словно энтропия начала спонтанно уменьшаться. Процент высокоэнтропийных состояний, способных продемонстрировать это занятное свойство, астрономически мал, но они определенно существуют.
Если мы верим, что фундаментальные физические законы обратимы, то почему бы целой Вселенной не развиваться по такому сценарию? Взять нашу Вселенную в ее сегодняшнем виде: ее описывает какое-то конкретное микросостояние, нам неизвестное, и все же мы знаем кое-что о макросостоянии, которому оно принадлежит. Давайте возьмем и поменяем импульсы всех частиц во Вселенной на противоположные, а в дополнение проделаем любые другие преобразования (например, заменим частицы античастицами), необходимые для совершения полного обращения времени. И посмотрим, что произойдет. Мы должны увидеть, как Вселенная развивается по направлению к «будущему», где ее ждет коллапс, расформирование звезд и планет и общее уменьшение энтропии; это будет история нашей настоящей Вселенной, воспроизведенная в обратную сторону.
Однако мысленный эксперимент поворота стрелы времени в целой Вселенной вспять совсем не так интересен, как тот же самый эксперимент, но проведенный над некоторой подсистемой Вселенной. Причина проста: никто ничего не заметит.
В главе 1 мы задавали вопрос, как будет выглядеть наша жизнь, если время потечет быстрее или медленнее, и основная трудность, с которой мы столкнулись в поисках ответа на этот вопрос, — нам было непонятно, с чем сравнивать. «Для всего, что только есть в мире, время внезапно начинает идти быстрее» — утверждение бессмысленное; мы измеряем время с помощью синхронизированных повторений, и пока все часы, к какому бы типу они ни принадлежали (включая биологические часы и часы, определяемые субатомными процессами), идут синхронно друг с другом, у нас нет никакой возможности определить, что «скорость времени» изменилась в ту или иную сторону. Только если ход каких-то конкретных часов ускорится или замедлится по сравнению со всеми остальными, это понятие обретет какой-то смысл.
Точно такая же проблема связана и с идеей о «времени, идущем назад». Представляя ситуацию, когда время начинает течь в обратную сторону, мы обычно воображаем, будто процессы в какой-то одной части Вселенной побежали вспять, например в стакане прохладной воды внезапно образовался кубик льда. Однако если вообще все сущее начнет «жить в обратную сторону», то с точки зрения внутреннего наблюдателя по сравнению с текущей ситуацией ничего не изменится. Все будет точно так же, как при развитии Вселенной вперед во времени, за исключением странной временно́й координаты, бегущей в противоположном направлении.
Стрела времени — следствие не того, что «энтропия увеличивается по направлению к будущему», а того, что «поведение энтропии вдоль одного направления во времени кардинально отличается от поведения энтропии вдоль другого». Предположим, во Вселенной есть место, с которым мы никоим образом не соприкасаемся и не взаимодействуем, и там энтропия в том направлении, которое мы сейчас называем будущим, уменьшается. Так же как и мы, люди, обитающие в этом мире обратного времени, ничего особенного вокруг себя не замечают. Они живут в соответствии с обычной стрелой времени и утверждают, что в их прошлом (в те времена, о которых у них есть воспоминания) энтропия была ниже, а в будущем она будет только возрастать. Различие лишь в том, что «будущее» для них — это наше «прошлое», и наоборот. Направление временной координаты во Вселенной абсолютно произвольно, устанавливается нами самими и никакого смысла само по себе не несет. Просто нам удобно говорить, что «время» растет в направлении увеличения энтропии. Важно понимать, что энтропия увеличивается вдоль одного и того же временного направления для всех, кто живет в обозримой Вселенной, если все они договорились о направлении стрелы времени.
Разумеется, все меняется, когда два человека (или две другие подсистемы физической Вселенной), способных общаться и взаимодействовать друг с другом, расходятся во мнениях относительно направления стрелы времени. Возможно ли, чтобы моя стрела времени указывала в другом направлении — совсем не туда, куда указывает ваша?
Деконструкция Бенджамина Баттона
Вторую главу мы открыли несколькими литературными примерами необычной стрелы времени — это были истории о людях или вещах, для которых время текло в обратную сторону. В «Стреле времени» у повествователя были воспоминания о будущем, но не о прошлом; Белая Королева чувствовала боль от укола еще до того, как булавка касалась ее пальца; а главный герой «Загадочной истории Бенджамина Баттона» Фрэнсиса Скотта Фицджеральда становился моложе с течением времени, хотя воспоминания и опыт у него накапливались обычным образом, как у всех остальных людей. Теперь у нас есть инструменты, благодаря которым мы можем обоснованно доказать, что ничего подобного в реальном мире никогда не произойдет.
Если фундаментальные законы физики обратимы, то, зная точное состояние всей Вселенной (или любой другой замкнутой системы) в произвольный момент времени, мы с помощью этих законов можем определить, в каком состоянии она окажется в любой момент в будущем или какой она была в любой момент в прошлом. Обычно в качестве точки отсчета выбирают «начальный» момент времени, но это, в принципе, может быть и любое другое мгновение. Более того, в текущем контексте, когда нас больше всего волнуют стрелы времени, указывающие во всевозможных направлениях, одного начального момента времени для всего сущего мы и вовсе не найдем. Итак, вот что нам интересно: почему настолько сложно, а то и вовсе невозможно найти состояние Вселенной, обладающее интересующим нас свойством — чтобы по мере нашей эволюции вперед во времени в некоторых ее частях энтропия увеличивалась, а в других уменьшалась?
На первый взгляд кажется, что это элементарно. Возьмите два контейнера с молекулами газа. Создайте в одном из них состояние с низкой энтропией, как в левом верхнем углу на рис. 8.6. Как только молекулы начинают движение, их энтропия возрастает, как и ожидалось. Второй контейнер мы возьмем в состоянии с высокой энтропией, которое получилось из состояния с низкой энтропией в результате временной эволюции. Изменим скорости всех содержащихся в нем молекул на противоположные, как в левом нижнем кадре на том же рисунке. Таким образом, во втором контейнере все будет готово для того, чтобы энтропия начала со временем уменьшаться. Итак, начиная с мгновения, когда вы завершили подготовку, в двух контейнерах энтропия будет меняться в противоположных направлениях.
Рис. 8.6. На верхних рисунках мы видим обычное поведение молекул в контейнере, которые из начального состояния с низкой энтропией переходят в конечное высокоэнтропийное состояние. На нижних рисунках мы обратили импульсы всех частиц из финального состояния верхней строки, для того чтобы пустить эволюцию в обратную сторону и добиться снижения энтропии
Однако нам нужно больше. Совсем не интересно наблюдать, как жизнь протекает вдоль разнонаправленных стрел времени в двух не связанных друг с другом мирах. Мы хотим воспроизвести это состояние во взаимодействующих системах — таких, которые способны каким-то образом общаться друг с другом.
И это все изменяет.[141] Представьте себе, что мы взяли эти два контейнера: в одном все готово к увеличению энтропии, а во втором — к ее уменьшению. После этого добавим крошечное взаимодействие: скажем, несколько протонов, летающих туда и сюда между двумя контейнерами. Столкнувшись с молекулами в одном контейнере, они будут перелетать в другой, отталкиваться там от новых молекул и т. д. Определенно, тело Бенджамина Баттона взаимодействовало с окружающим миром куда сильнее (так же, как Белая Королева и повествователь в «Стреле времени» Мартина Эмиса).
Это небольшое взаимодействие приведет к легкому изменению скоростей тех молекул, с которыми доведется столкнуться протонам (импульс сохраняется, поэтому других вариантов быть не может). Для контейнера, где энтропия изначально была низкой, это не представляет никакой проблемы, так как для того, чтобы заставить энтропию расти, специальной тонкой настройки проводить не нужно. Однако это полностью разрушает нашу попытку создать во втором контейнере условия, при которых энтропия смогла бы уменьшиться. Даже самое незначительное изменение скорости очень быстро распространится на весь объем газа: одна столкнувшаяся с протоном молекула ударит другую, та, в свою очередь, врежется еще в пару и т. д. Для того чтобы энтропия в контейнере с газом стала волшебным образом уменьшаться, направления скоростей всех молекул должны быть точно согласованы, и любое дополнительное взаимодействие нарушит это хрупкое согласие. В первом контейнере энтропия будет вполне ожидаемо возрастать, а во втором она как была высокой, так высокой и останется — по сути, эта подсистема будет пребывать в равновесном состоянии. Во взаимодействующих подсистемах Вселенной не могут существовать несовместимые стрелы времени.[142]
Энтропия как беспорядок
Мы часто говорим, что энтропия — мера беспорядка. Это всего лишь удобный перевод очень специфического понятия на простой человеческий язык — абсолютно адекватный на первый взгляд, но таящий пару неточностей, которые при определенных обстоятельствах могут всплыть на поверхность. Теперь, когда нам известно настоящее определение энтропии, данное Больцманом, мы можем проверить, насколько близка к истине эта неформальная идея.
Вопрос в том, что следует понимать под «порядком». В отличие от энтропии, порядок — не такое понятие, которому можно с легкостью дать строгое определение. В голове мы ассоциируем «порядок» с целенаправленным расположением объектов тем или иным способом в отличие от состояния хаоса. Действительно, обсуждая энтропию, мы использовали очень похожие выражения. Неразбитое яйцо кажется нам более упорядоченным, чем яйцо, вылитое в чашку и взбитое до однородного состояния.
Энтропия кажется естественным образом связанной с понятием беспорядка, потому что чаще всего путей создания беспорядка больше, чем путей упорядочения объектов. Классический пример роста энтропии — распределение документов на рабочем столе. Вы складываете их в аккуратные стопки — приводите в порядок, в состояние с низкой энтропией, но со временем они расползаются по столу — порядок утерян, энтропия возросла. Конечно, ваш стол нельзя назвать замкнутой системой, но основная идея, думаю, понятна.
С другой стороны, если слишком налегать на ассоциации, можно опровергнуть свои же идеи. Взять, например, молекулы воздуха в комнате, где вы сидите прямо сейчас. Скорее всего, они равномерно распределены по всему объему помещения и образуют высокоэнтропийную конфигурацию. Теперь представьте себе, что все молекулы собрались в центре комнаты в небольшой области всего лишь в несколько сантиметров шириной и к тому же выстроились в фигуру, повторяющую Статую Свободы, только в миниатюрном варианте. Неудивительно, что энтропия такой конфигурации намного ниже, и все согласятся, что порядка в ней намного больше. Но попробуем зайти еще дальше: пусть газ сожмется еще сильнее и соберется в крохотную аморфную кляксу диаметром не больше одного миллиметра. Поскольку область пространства, в которой теперь сконцентрирован весь газ, стала еще меньше, энтропия новой конфигурации также уменьшилась по сравнению с конфигурацией «Статуя Свободы» (расположить молекулы так, чтобы они образовали статуэтку среднего размера, можно куда большим числом способов, чем собрать их в очень маленькую кляксу). Однако вряд ли кто-то будет утверждать, что аморфная клякса более «упорядочена», чем копия знаменитого памятника, даже если эта клякса действительно крайне мала. Получается, что в данном случае корреляция между упорядоченностью и малой энтропией отсутствует, так что нам следует быть более осторожными с выбором примеров.
Этот пример кажется несколько надуманным, и действительно, совсем не нужно так изощряться, чтобы опровергнуть утверждение об эквивалентности энтропии и беспорядка. Продолжая серию кухонных примеров, рассмотрим масло и уксус. Если вы смешаете эти два ингредиента в чашке, готовя заправку для салата, а затем отставите посудину в сторону, то заметите, что смесь очень быстро перестает быть однородной — масло отделяется от уксуса. Не бойтесь, это не означает, что салатная заправка способна нарушить второе начало термодинамики. Уксус в основном состоит из воды, а молекулы воды прилипают к молекулам масла, и, в силу определенных химических свойств масла и воды, они способны образовывать при этом лишь строго определенные конфигурации. Таким образом, когда вы тщательно перемешиваете масло с водой (или с уксусом), молекулы воды прилипают к молекулам масла в очень специальных конфигурациях, соответствующих состоянию с относительно низкой энтропией. Когда же две субстанции по большей части разделены, отдельные молекулы получают возможность свободно перемещаться между другими молекулами того же типа. При комнатной температуре это приводит к тому, что у масла с водой энтропия выше в конфигурации, когда они разделены, а не когда их старательно перемешали.[143] Порядок спонтанно возникает на макроскопическом уровне, но по сути — на микроскопическом уровне — это банальнейший беспорядок.
В по-настоящему больших системах все еще сложнее. Давайте перейдем от газа, содержащегося в одном небольшом помещении, к облаку газа и пыли астрономических масштабов — скажем, галактической туманности. Она производит впечатление весьма хаотичного и высокоэнтропийного объекта. Однако если размер туманности достаточно велик, она начинает сжиматься под давлением собственной гравитации, в результате чего формируется звезда — возможно, даже с вращающимися вокруг нее планетами. Поскольку этот процесс подчиняется второму началу термодинамики, мы можем быть уверены в том, что в конце него энтропия выше, чем была в начале (мы старательно учитываем все порожденное коллапсом излучение и другие побочные эффекты). Но звезда с несколькими планетами кажется, по крайней мере с неформальной точки зрения, более упорядоченной системой, чем рассредоточенное межзвездное облако газа. Энтропия увеличилась, но точно так же возросла степень упорядоченности.
Хитрость в данном случае в гравитации. Можно бесконечно говорить о том, как гравитация в пух и прах разносит наше бытовое понимание энтропии, но достаточно будет заметить, что взаимодействие гравитации с другими силами обладает чудесной способностью создавать порядок, одновременно, тем не менее, повышая энтропию — хотя бы и временно. Это великолепная подсказка, дающая понять, как работает Вселенная; жаль только, что пока наших знаний недостаточно для того, чтобы ею воспользоваться.
Пока давайте просто запомним, что связка «энтропия — беспорядок» не идеальна. В этом нет ничего страшного, и мы можем продолжать неформально объяснять понятие энтропии на примере захламленного рабочего стола. Однако что в действительности сообщает нам энтропия, так это сколько микросостояний с макроскопической точки зрения кажутся нам неразличимыми. Иногда это напрямую связано с порядком, а иногда нет.
Принцип безразличия
С больцмановским подходом ко второму началу термодинамики связаны еще два надоедливых вопроса, которые не мешало бы прояснить или, по крайней мере, о которых стоит упомянуть. Итак, у нас есть огромный набор микросостояний, который мы подразделяем на макросостояния, и мы объявляем, что энтропия равна логарифму числа микросостояний в данном макросостоянии. Теперь нам предлагают добавить еще один существенный факт — предположение о том, что все микросостояния, отвечающие одному и тому же макросостоянию, «равновероятны».
Следуя по цепочке рассуждений Больцмана, логично было бы утверждать, что причина возрастания энтропии со временем кроется всего-навсего в количестве микросостояний: куда больше микросостояний образуют макросостояния с высокой энтропией, чем с низкой. Однако это утверждение не имело бы никакого смысла, если бы типичная система проводила намного больше времени в низкоэнтропийных микросостояниях (а их относительно немного), чем в высокоэнтропийных (которых гораздо больше). Представьте себе, будто у микроскопических законов физики появилось новое свойство: почти все высокоэнтропийные состояния естественным образом переходят в одно из немногих низкоэнтропийных состояний. В таком случае тот факт, что состояний с высокой энтропией больше, не играл бы совершенно никакой роли; мы все равно знали бы, что если подождать достаточно долго, то энтропия в системе понизится.
Несложно вообразить мир с подобными безумными законами физики. Давайте еще раз вернемся к бильярдному столу с катающимися по нему шарами. Шары перемещаются по столу совершенно обычным образом, за одним важным исключением: каждый раз, когда шар врезается в какой-то один бортик стола, он мгновенно к нему прилипает. (Мы предполагаем, что в нашем мысленном эксперименте нет злоумышленника, намазавшего бортик клеем, или еще чего-то подобного, демонстрирующего, тем не менее, обратимое поведение на микроскопическом уровне, — в данном случае мы вводим совершенно новый фундаментальный закон физики.) Обратите внимание на то, что пространство состояний этих бильярдных шаров абсолютно такое же, каким оно было бы в традиционном мире: зная положение и импульс каждого шара, мы можем с идеальной точностью предсказать их будущее. Тонкость лишь в том, что с громадной вероятностью в конце эволюции этой системы все шары будут находиться возле одного из бортиков. Энтропия такой конфигурации чрезвычайно низка; подобных микросостояний совсем немного. В таком мире энтропия могла бы спонтанно уменьшиться даже в замкнутой системе, такой как бильярдный стол.
Совершенно очевидно, что в этом примере, хоть и притянутом за уши, фигурирует новшество: необратимый закон физики. А сама система очень напоминает шахматную доску D из предыдущей главы: там диагональные линии серых квадратиков обрывались после соприкосновения с одним из вертикальных столбцов. Информации о положениях и импульсах всех шаров на этом забавном столе достаточно для того, чтобы предсказывать будущее, но восстановить прошлое она не позволит. Увидев шар, лежащий рядом с бортиком, мы уже не сможем узнать, как долго он там находится.
Реальные же законы физики на фундаментальном уровне обратимы. И если вдуматься, это их свойство гарантирует, что высокоэнтропийные состояния не будут стремиться переходить в состояния с низкой энтропией. Как вы помните, основа обратимости — сохранение информации. Информация, необходимая для описания конкретного состояния, сохраняется, несмотря на то что система движется, меняясь с течением времени. Это означает, что два разных состояния с течением времени всегда переходят в два разных состояния; если бы в будущем они приходили в какое-то одно состояние, то мы не могли бы восстановить прошлое этого состояния. Поэтому совершенно невозможно, чтобы все высокоэнтропийные состояния стремились в низкоэнтропийные: состояний с низкой энтропией просто-напросто слишком мало, для того чтобы это было реально. Данный результат называется теоремой Лиувилля в честь французского математика Жозефа Лиувилля.
Это почти то, что нам нужно, но не совсем. И, как это часто случается, мы хотим того, что вряд ли сможем в действительности получить. Предположим, что у нас есть какая-то система, мы знаем, в каком макросостоянии она находится, и хотели бы сделать какие-то предсказания относительно ее будущего. Пусть это будет, например, стакан воды с плавающим в ней кубиком льда. Согласно теореме Лиувилля, большинство микросостояний этого макросостояния будут стремиться к увеличению (либо сохранению) энтропии. То же самое говорит нам второе начало термодинамики: кубик льда, скорее всего, растает. Однако система находится ровно в одном конкретном микросостоянии, даже если мы не знаем точно, в каком. Можем ли мы быть уверены, что это не одно из того крошечного набора микросостояний, в которых энтропия способна в любое мгновение внезапно уменьшиться? Как гарантировать, что кубик льда не увеличится, одновременно нагрев окружающую его воду?
Ответ прост: никак. В макросостоянии «вода с кубиком льда» обязательно присутствует какое-то конкретное, очень редкое микросостояние, которое действительно будет эволюционировать по направлению к микросостоянию с меньшей энтропией. Статистическая механика (основанная на атомах версия термодинамики), по сути, наука вероятностная: нам неизвестно, что в точности произойдет; мы можем лишь утверждать, что вероятность определенных событий наиболее высока. По крайней мере, нам хотелось бы иметь возможность делать такие утверждения. В действительности же мы можем говорить лишь о том, что большинство состояний с небольшой энтропией будут развиваться в сторону увеличения, а не уменьшения энтропии. Вы обратили внимание на тонкое различие между «большинство микросостояний данного макросостояния развиваются в сторону увеличения энтропии» и «принадлежащее данному макросостоянию микросостояние с большой вероятностью будет развиваться в сторону увеличения энтропии»? Первое утверждение — это всего лишь подсчет относительного числа микросостояний, обладающих разными свойствами («кубик льда тает» или «кубик льда растет»), однако во втором мы уже делаем заявление о вероятности какого-то события в реальном мире. Это не одно и то же. В мире больше китайцев, чем литовцев; однако это не означает, что вы с большей вероятностью столкнетесь с китайцем, чем с литовцем, прогуливаясь по улицам Вильнюса.
Другими словами, традиционная статистическая механика основывается на критически важном допущении: если мы находимся в определенном макросостоянии и знаем полный набор составляющих его микросостояний, мы можем предполагать, что все эти микросостояния одинаково вероятны. В любых подобных рассуждениях допущения неизбежны, потому что без их помощи нам никак не перейти от банального подсчета количества состояний к точному вычислению вероятностей. У предположения о равной вероятности есть название, которое также отлично подошло бы в качестве заглавия для стратегии поиска спутника жизни, особенно если вы человек эмоциональный: «принцип безразличия». Впервые оно прозвучало в контексте теории вероятностей задолго до того, как на сцене появилась статистическая механика, и озвучил его наш старый друг Пьер-Симон Лаплас. Он был упертым детерминистом, однако, как и любой другой человек, понимал, что чаще всего нам приходится оперировать далеко не всеобъемлющими наборами фактов. Тем не менее ему было интересно, какие выводы человек способен делать в ситуациях неполной информированности.
Так вот, чаще всего лучшее из всего, что мы можем предпринять, — применить принцип безразличия. Если нам не известно ничего, кроме того, что система находится в определенном макросостоянии, мы предполагаем, что все образующие его микросостояния одинаково вероятны (не забывая, однако, об одном принципиальном исключении, которое называется гипотезой о прошлом, — о нем мы поговорим в конце главы). Было бы очень здорово, если бы у нас была возможность доказать истинность данного предположения, — и действительно, многие люди пытались это сделать. Например, если бы система в процессе своего движения проходила через все возможные микросостояния (или по крайней мере через достаточно большой их набор, почти полностью охватывающий все возможные микросостояния) за разумный промежуток времени, то у нас были бы определенные основания считать все микросостояния одинаково вероятными. Система, посещающая каждое (или почти каждое) состояние в своем пространстве состояний и, таким образом, перебирающая все (или почти все) возможные исходы, называется эргодической. Проблема в том, что даже если система действительно является эргодической (а таковыми являются далеко не все системы), ей потребовалась бы целая вечность, чтобы пройти вблизи всех своих микросостояний. Ну ладно, может быть, не вечность, но это все равно заняло бы ужасно много времени. Макроскопическая система может пребывать в таком огромном числе состояний, что для того, чтобы перепробовать их все, потребуется время, сопоставимое с возрастом Вселенной.
Настоящая причина существования принципа безразличия заключается в том, что ничего лучше у нас просто нет. Ну и, конечно, потому что он вроде бы работает.
Другие энтропии, другие стрелы
В наших рассуждениях мы дали четкие определения энтропии и стрелы времени. Энтропия — это число состояний, неразличимых с точки зрения макроскопического наблюдателя, а стрела времени возникает, потому что во всей обозримой Вселенной энтропия непрерывно увеличивается. Несмотря на то что, формулируя эти определения, мы отталкивались от свойств реального мира, другие люди, употребляя те же самые термины, могут подразумевать что-то совершенно иное.
Определение энтропии, с которым мы работаем, — то самое, что выгравировано на могильной плите Больцмана, — связывает с каждым индивидуальным микросостоянием определенную энтропию. Главная особенность этого определения — его двухэтапность. Сначала мы принимаем решение о том, что же можно считать «макроскопически неразличимыми» характеристиками состояния, а затем на основании этого разбиваем все пространство состояний на части — набор макросостояний. Для вычисления энтропии микросостояния мы берем общее число макроскопически неотличимых от него микросостояний и вычисляем ее логарифм.
Однако обратите внимание на то, что здесь происходит кое-что очень интересное. Пусть некоторое состояние эволюционирует с течением времени из низкоэнтропийной области в высокоэнтропийную. Пусть мы потеряли всю информацию об этом состоянии, кроме макросостояния, которое оно проходит в данный момент времени. Тогда со временем мы будем обладать все меньшей информацией о микросостоянии, которое рассматриваем. Другими словами, когда нам говорят, что система принадлежит определенному макросостоянию, вероятность того, что она находится в конкретном микросостоянии из этого макросостояния, с увеличением энтропии уменьшается — просто потому, что число вариантов стремительно возрастает. Точность нашей информации о состоянии — насколько верно мы определили микросостояние — уменьшается по мере того, как энтропия увеличивается.
Это подразумевает необходимость иного подхода к определению энтропии, и альтернативный взгляд традиционно связывают с именем Джозайи Уилларда Гиббса (в действительности Больцман исследовал похожие определения, но нам удобнее ассоциировать новый подход именно с Гиббсом, потому что у Больцмана уже один есть). Вместо того чтобы рассматривать энтропию как характеристику состояний, а именно числа других состояний, макроскопически неотличимых от рассматриваемого, — мы могли бы считать энтропию мерой того, что нам известно о состоянии. В больцмановском подходе сведения о том, в каком макросостоянии мы находимся, по мере увеличения энтропии теряют информативность: мы не понимаем, о каком микросостоянии идет речь. Гиббс то же самое рассматривает с другой стороны, и у него энтропия определяется в терминах того, как много мы знаем. Вместо того чтобы фильтровать пространство состояний, мы начинаем с распределения вероятностей, указывающего для каждого возможного микросостояния шанс, что система действительно сейчас находится в нем. Также Гиббс дает нам формулу, аналогичную больцмановской, для расчета энтропии, связанной с данным распределением вероятностей.[144] Ничего огрублять не приходится.
И все же ни больцмановскую формулу для энтропии, ни формулу Гиббса нельзя назвать «правильной». Мы сами вводим эти определения, манипулируем ими и используем для того, чтобы лучше понять мир; у каждой свои преимущества и недостатки. Формулу Гиббса часто применяют в прикладных задачах по одной простой причине: ее проще использовать. Поскольку огрубление отсутствует, дискретного изменения значения энтропии при переходе системы от одного макросостояния к другому не происходит — это важное преимущество, упрощающее решение уравнений.
Однако подход Гиббса обладает двумя заметными недостатками. Один из них эпистемологический: идея «энтропии» здесь связывается с нашими знаниями о системе, а не с самой системой. У людей, старающихся с большой осторожностью рассуждать о том, что же такое на самом деле энтропия, это продолжает вызывать страшную головную боль, и споры насчет обоснованности этого подхода не утихают. Но тот подход, которого я решил придерживаться в этой книге: считать энтропию характеристикой состояния, но не характеристикой наших знаний о нем, — вроде бы позволяет избежать большинства проблемных вопросов.
Второй недостаток куда значительнее: если вам известны законы физики и вы примените их для изучения эволюции «энтропии Гиббса» с течением времени, вы обнаружите, что ее величина не меняется. Если вдуматься, то никакой ошибки здесь нет. Энтропия Гиббса описывает то, насколько хорошо мы понимаем текущее состояние системы. Однако при условии обратимости физических законов данная величина меняться не будет, ведь информация не возникает и не разрушается. Для того чтобы энтропия увеличивалась, в будущем у нас должно стать меньше сведений о состоянии системы, чем есть сейчас; но мы всегда можем прокрутить пленку назад и посмотреть, что было раньше, поэтому такая ситуация невозможна. Вывести второе начало термодинамики или что-то подобное, придерживаясь подхода Гиббса, можно только в том случае, если «забыть» часть информации о движении. Но если копнуть поглубже, то станет очевидно, что с философской точки зрения это то же самое, что огрубление, с которым мы имели дело в больцмановском подходе; просто мы перенесли процедуру «забывания» из пространства состояний на уравнения движения.
Тем не менее практическая польза формулы Гиббса для определенных приложений не вызывает сомнения, и ученые продолжают активно пользоваться ею. Однако и это еще не конец истории; существует несколько других известных подходов к изучению энтропии, а в литературе непрерывно продолжают появляться упоминания о новых. Ничего странного в этом нет; в конце концов, определения Больцмана и Гиббса должны были заменить вполне достойное определение энтропии, данное Клаузиусом, но оно и по сей день используется под названием термодинамической энтропии. После появления на сцене квантовой механики Джон фон Нейман предложил формулу для энтропии, особым образом адаптированную под квантовый мир. Клод Шеннон сформулировал определение энтропии, очень близкое по духу к гиббсоновскому, однако в рамках информационной теории, а не физики — об этом мы поговорим в следующей главе. Смысл не в том, чтобы найти одно-единственное истинное определение энтропии. Ученые придумывают понятия, служащие полезным целям в определенных случаях, и это абсолютно нормально. Не позволяйте никому одурачить вас заявлениями о «единственно верном определении», уникальным образом раскрывающем суть такого явления, как энтропия.
Точно так же, как существует несколько определений энтропии, есть множество различных «стрел времени» — еще один потенциальный источник мошенничества. Мы рассматривали термодинамическую стрелу времени, определяемую энтропией и вторым началом термодинамики. Но можно также говорить о космологической стреле времени (Вселенная расширяется), психологической стреле времени (мы помним прошлое, но не будущее), стреле времени излучения (электромагнитные волны расходятся прочь от движущихся зарядов, а не притягиваются к ним) и т. д. Все это разнообразие стрел времени естественным образом подразделяется на несколько категорий. Часть из них, например космологическая стрела, отражает факты об эволюции Вселенной, но тем не менее обладает свойством обратимости. Вполне возможно, что окончательное объяснение термодинамической стрелы времени также раскроет нам глаза на космологическую стрелу (и это действительно кажется весьма вероятным); в то же время с точки зрения микроскопических законов физики расширение Вселенной не представляет никакой загадки в отличие от увеличения энтропии. Другие стрелы, отражающие поистине необратимые процессы, — психологическую стрелу, стрелу излучения и даже стрелу, определяемую квантовой механикой, мы будем исследовать позже. Все они кажутся отражениями одних и тех же глубинных причин, характеризуемых изменением энтропии. Разобраться в подробностях, как они все взаимосвязаны, несомненно, важно и интересно, однако я продолжу использовать термин «стрела времени», имея в виду одну конкретную стрелу — ту, что основывается на увеличении энтропии.
Доказательство второго начала термодинамики
После того как Больцману открылся смысл энтропии как меры количества микросостояний, соответствующих выбранному макросостоянию, он поставил себе новую цель: уже на этом уровне понимания установить происхождение второго начала термодинамики. Я уже рассказывал об основных причинах, почему второе начало действительно работает: состояний с высокой энтропией намного больше, чем с низкой, а разные начальные состояния в процессе развития приходят к разным конечным состояниям, поэтому большую часть времени (с действительно подавляющей вероятностью) можно ожидать, что энтропия будет увеличиваться. Однако Больцман был истинным ученым, и ему недостаточно было лишь этого. Он хотел доказать, что второе начало термодинамики следует из его определения.
Довольно непросто вообразить себя на месте ученого, занимающегося исследованием термодинамики в конце XIX века. Эти ребята чувствовали, что неспособность энтропии уменьшаться в замкнутой системе не просто отличная идея, а закон. Мысль о том, что энтропия, вероятно, будет увеличиваться, казалась им не более правдоподобной, чем, например, предположение о том, что энергия, вероятно, будет сохраняться. И правда, числа настолько ошеломляюще велики, что вероятностные выводы статистической механики можно было бы использовать как абсолютно верные для всех практических задач. Тем не менее Больцман стремился продемонстрировать нечто более определенное.
В 1872 году Больцман (в то время ему было двадцать восемь лет) опубликовал статью, в которой предлагал использовать для доказательства того, что энтропия всегда будет либо увеличиваться, либо оставаться постоянной, кинетическую теорию. Этот результат называется H-теоремой, которая с того самого времени остается источником множества споров в научной среде. Даже сегодня одни люди уверены, что H-теорема объясняет незыблемость второго начала термодинамики в реальном мире, тогда как другие полагают ее всего лишь забавным пережитком истории интеллектуальной мысли. Правда в том, что это действительно чрезвычайно интересный результат для статистической механики, но «доказать» второе начало он все же не в силах.
Больцман размышлял следующим образом. В макроскопическом объекте, таком как наполненная газом комната или чашка кофе с молоком, присутствует невероятное количество молекул — более 1024. Он рассматривал такой случай, когда газ относительно разрежен; в этой ситуации столкнуться могут две любые частицы, но редкие события, когда одновременно друг в друга врезаются три или более частиц, можно игнорировать (это на самом деле не вызывающее претензий предположение). Нам необходимо найти способ, как охарактеризовать макросостояние всех этих частиц. Итак, вместо того чтобы отслеживать положения и импульсы всех молекул (что дало бы нам полное описание микросостояния), давайте следить за средним числом частиц, обладающих данным положением и импульсом. Например, в контейнере с газом, находящемся в равновесии при определенной температуре, среднее число частиц в каждой точке равно, а также существует некоторое распределение импульсов, такое, что средняя энергия частиц дает нам нужную температуру. Имея на руках лишь эту информацию, можно вычислить энтропию газа. А затем (если вы Больцман) доказать, что энтропия газа, пребывающего не в равновесном состоянии, будет со временем возрастать, пока не достигнет максимального значения, после чего останется на этом уровне. Очевидно, что мы вывели второе начало термодинамики.[145]
Очевидно, однако, что здесь что-то не чисто. Мы начали с микроскопических законов физики, совершенно инвариантных относительно направления времени, — они работают одинаково хорошо как вперед во времени, так и назад. А Больцман утверждал, что получил на основе этих законов результат, абсолютно точно не обладающий свойством инвариантности и приводящий к очевидной стреле времени, что подтверждается словами об увеличении энтропии по направлению к будущему. Как же можно получить необратимые результаты исходя из обратимых предположений?
Данное возражение было громко и ясно высказано Йозефом Лошмидтом в 1876 году, после того как схожие сомнения появились у Уильяма Томсона (лорда Кельвина) и Джеймса Клерка Максвелла. Лошмидт был близким другом Больцмана, взявшим молодого физика под свою опеку в Вене в 1860-е годы. И он не проявлял никакого скептицизма по отношению к атомной теории; в действительности Лошмидт первым сумел точно оценить физические размеры молекул. Однако ему было невдомек, как Больцман сделал вывод об асимметрии времени, не прибегая к помощи его предположений.
Доводы, стоящие за тем, что нам сегодня известно под названием «возражения Лошмидта об обратимости», просты. Рассмотрим какое-то конкретное микросостояние, соответствующее макросостоянию с низкой энтропией. Оно с огромной вероятностью будет развиваться в сторону высокоэнтропийных состояний. Но инвариантность относительно отражения времени гарантирует, что для каждого такого пути развития существует другой допустимый путь — зеркальное отражение оригинала, — начинающийся в высокоэнтропийном состоянии и эволюционирующий навстречу низкой энтропии. В пространстве всех процессов, которые могут происходить с течением времени, можно найти ровно столько же систем, начинающих существование в условиях высокой энтропии и приходящих в состояние с низкой энтропией, как и систем, переходящих из низкоэнтропийного состояния к высокоэнтропийному. На рис. 8.5, где показано пространство состояний, разделенное на макросостояния, мы нарисовали траекторию, берущую начало в макросостоянии с очень низкой энтропией. Однако траектория не появляется из ниоткуда; она должна была существовать и до того, и в ее истории должно было быть состояние с высокой энтропией, — явный пример пути, вдоль которого энтропия уменьшилась. Очевидно, что если вы верите в динамику, инвариантную относительно отражения времени (как все эти ученые), то совершенно невозможно доказать, что энтропия всегда только увеличивается.[146]
Однако Больцман что-то доказал, и, насколько можно было судить, в его рассуждениях не было математических или логических ошибок. Скорее всего, в его доводы каким-то образом проникло предположение об асимметричности времени, даже если эта идея не была высказана явно.
Действительно, так и случилось. Одним из важнейших шагов в аргументах Больцмана было предположение о молекулярном хаосе — Stosszahlansatz по-немецки, что можно буквально перевести как «гипотеза о числе столкновений». Суть его в том, что мы считаем движение молекул произвольным, то есть они не строят коварных заговоров с целью подчинить свое движение определенной схеме. Но для того, чтобы энтропия уменьшалась, именно это и требуется — коварный заговор! Таким образом, Больцман, в сущности, доказал, что энтропия может увеличиваться только в том случае, если с самого начала отмести любые альтернативные варианты. В частности, он предполагал, что импульсы любой пары частиц до того, как они столкнутся, независимы или не скоррелированы между собой. Однако это «до» как раз и иллюстрирует то самое предположение об асимметричности времени; если частицы никак не скоррелированы до столкновения, то после между ними установится взаимосвязь или корреляция. Вот так предположение о необратимости прокралось в доказательство.
Если взять систему в состоянии с низкой энтропией и позволить ей развиваться по направлению к увеличению энтропии (например, подождать, пока растает кубик льда), то после того, как все закончится, между молекулами можно будет найти огромное количество корреляций. В частности, среди них будут корреляции, гарантирующие, что если мы инвертируем все импульсы, то система вернется в низкоэнтропийное начальное состояние. В рассуждениях Больцмана такая возможность учтена не была. Он доказал, что энтропия никогда не будет уменьшаться, если отбросить обстоятельства, при которых энтропия могла бы уменьшиться.
Когда законов физики недостаточно
В конечном счете совершенно ясно, каким будет итог всех этих споров — по крайней мере, в нашей наблюдаемой Вселенной. Лошмидт прав; действительно, в наборе всех возможных процессов уменьшение энтропии встречается так же часто, как и увеличение. Однако прав и Больцман, поскольку статистическая механика убедительно объясняет, почему с подавляющей вероятностью мы будем встречать низкоэнтропийные условия, переходящие в высокоэнтропийные, а не наоборот. Вывод очевиден: помимо того что динамикой управляют физические законы, необходимо также предполагать, что Вселенная начала свое существование в состоянии с низкой энтропией. Это дополнительное предположение, граничное условие, которое не является частью законов физики (во всяком случае, пока мы не переходим к обсуждению того, что происходило до Большого взрыва, а такую дискуссию вряд ли можно было услышать в 1870-х годах). К сожалению, такого вывода было недостаточно для ученых того времени, и в последующие годы дискуссии о статусе H-теоремы заполонили ученый мир.
В 1876 году Больцман опубликовал ответ на возражение Лошмидта об обратимости, который, впрочем, ничуть не прояснил ситуацию. Определенно, Больцман согласился с тем, что в словах Лошмидта есть смысл, и признал, что второе начало термодинамики, несомненно, обладает вероятностными свойствами — ведь если кинетическая теория верна, то оно попросту не может быть абсолютным. В начале статьи Больцман явно говорит об этом:
Поскольку энтропия уменьшалась бы при прохождении системы через эту последовательность в обратном направлении, мы убеждаемся, что факт увеличения энтропии во всех физических процессах нашего мира невозможно было бы подтвердить, отталкиваясь исключительно от природы сил, действующих между частицами; это должно быть следствием начальных условий.
Можно ли найти заявление более недвусмысленное, чем это: «факт увеличения энтропии во всех физических процессах нашего мира… должен быть следствием изначальных условий»? Однако, не в силах расстаться с идеей о доказательстве, не зависящем от начальных условий, он тут же заявляет:
Тем не менее нам не нужно предполагать существование специального типа начальных условий для того, чтобы предоставить механическое доказательство второго начала термодинамики, — если мы готовы принять статистическую точку зрения.
«Принятие статистической точки зрения», судя по всему, означает, что он согласен с утверждением о подавляющей вероятности такого развития событий, при котором энтропия будет увеличиваться, хотя это будет происходить не всегда. Но что он имеет в виду, говоря, что нам не нужно предполагать существование специального типа начальных условий? Следующие предложения подтверждают худшие опасения:
Хотя вероятность любого индивидуального неоднородного состояния (соответствующего низкой энтропии) эквивалентна вероятности любого индивидуального однородного состояния (соответствующего высокой энтропии), существует намного больше однородных состояний, чем неоднородных. Следовательно, если начальное состояние выбирается случайным образом, то можно с уверенностью говорить, что система, скорее всего, будет развиваться по направлению к однородному состоянию, а энтропия будет увеличиваться.
Первое предложение истинно, но второе содержит очевидную ошибку. Если выбирать начальное состояние случайным образом, то оно не «скорее всего, будет развиваться по направлению к однородному состоянию», а вероятнее всего само окажется однородным (высокоэнтропийным). Почти все из небольшого числа низкоэнтропийных состояний будут стремиться к увеличению энтропии. В противоположность этому, лишь крайне малая часть состояний с высокой энтропией будет развиваться по сценарию уменьшения энтропии; в то же время самих высокоэнтропийных состояний существует невообразимо больше. Общее число низкоэнтропийных состояний, эволюционирующих по направлению к увеличению энтропии, равно, как и утверждал Лошмидт, общему числу высокоэнтропийных состояний, теряющих энтропию в процессе эволюции.
Чтение трудов Больцмана вызывает стойкое ощущение того, что этот ученый на несколько шагов опережал свое время: он видел детали, заключенные в любых приводимых доводах, куда лучше любого собеседника. Однако, перебирая эти детали, он все же не всегда умел вовремя остановиться; более того, печально известно его непостоянство в выборе рабочих гипотез, на которых он основывал ту или иную работу. Тем не менее не нам его судить. Ведь прошло уже 140 лет, а мы до сих пор не можем прийти к согласию относительно того, что же такое энтропия и в каких терминах правильно рассуждать о втором начале термодинамики.
Гипотеза о прошлом
Невозможно установить происхождение постоянного увеличения энтропии и соответствующей этому стрелы времени в пределах наблюдаемой Вселенной, опираясь только на основополагающие обратимые законы физики. Требуется некое граничное условие в начале времен. Чтобы понять, почему второе начало термодинамики действительно работает в реальном мире, недостаточно всего лишь подойти к основополагающим физическим законам со статистической точки зрения; мы должны также предположить, что обозримая Вселенная начала свое существование в состоянии очень низкой энтропии. Дэвид Альберт заботливо присвоил данному предположению удобное и простое название: «Гипотеза о прошлом».[147]
Гипотеза о прошлом представляет собой несущее огромную значимость исключение из принципа безразличия, на который мы ссылались выше. Согласно принципу безразличия, если нам известно, в каком макросостоянии пребывает система, то мы должны считать все составляющие данное макросостояние микросостояния одинаково вероятными. Это предположение здорово помогает прогнозировать будущее на основе статистической механики. Но если попытаться применить его для реконструкции прошлого, результат будет плачевным.
Больцман привел убедительные аргументы, объясняющие, почему энтропия увеличивается: возможностей оказаться в высокоэнтропийном состоянии куда больше, чем в низкоэнтропийном, поэтому большинство микросостояний в макросостояниях с низкой энтропией эволюционируют по направлению к высокоэнтропийным макросостояниям. Однако направление времени в этом объяснении никак не фигурирует. Следуя этой логике, высокую энтропию в большей части микросостояний из произвольного макросостояния мы будем наблюдать не только в будущем — в прошлом они также когда-то прошли через этап высокой энтропии.
Рассмотрим все микросостояния из произвольного макросостоянии с небольшой энтропией. Подавляющее большинство этих состояний когда-то обладали высокой энтропией. Так обязательно должно быть, потому что состояний с низкой энтропией не так много, чтобы все рассматриваемые микросостояния могли произойти из них. Таким образом, высока вероятность того, что типичное микросостояние с небольшой энтропией — «статистическая флуктуация» высокоэнтропийного прошлого. Этот довод эквивалентен утверждению о том, что энтропия в будущем должна увеличиваться, но только в противоположном направлении по времени.
В качестве примера снова возьмем контейнер с перегородкой, содержащий 2000 частиц газа. Изначально у системы низкая энтропия (80 % частиц скопились в одной половине контейнера), но затем она начинает увеличиваться, как показано на рис. 8.3. На рис. 8.7 мы дополнили график роста энтропии в будущем, показав, как энтропия эволюционирует по направлению к прошлому. Поскольку базовое правило динамики нашей системы («каждая частица каждую секунду с вероятностью 0,5 % может перелететь на другую сторону») не зависит от направления времени, неудивительно, что высокая энтропия наблюдается и справа, и слева относительно нашей стартовой точки, то есть и в прошлом, и в будущем.
Рис. 8.7. Энтропия контейнера с газом, разделенного перегородкой. «Граничное» условие наложено в момент времени, равный 500, когда 80 % частиц находятся в одной половине контейнера, а 20 % — в другой (низкоэнтропийное макросостояние). Энтропия увеличивается в обоих направлениях от этой точки: и при эволюции в сторону будущего, и при движении к прошлому
Вы можете возразить: очень маловероятно, что система, начавшая существование в равновесном состоянии, вдруг начнет терять энтропию. Это верно; скорее всего, энтропия либо возрастет, либо останется примерно на том же уровне. Однако учитывая, что мы, в принципе, настаиваем на существовании низкоэнтропийного состояния, высока вероятность того, что данное состояние представляет на кривой энтропии минимум — с более высокими значениями как в прошлом, так и в будущем.
По крайней мере, такая ситуация была бы наиболее вероятной, если бы, кроме принципа безразличия, нам больше не на что было опереться. Проблема в том, что никто не считает, будто энтропия реальной Вселенной ведет себя так, как показано на рис. 8.7. Все согласны с утверждением о том, что завтра энтропия будет выше, чем сегодня, и ни у кого не возникает сомнений, что сегодня она выше, чем была вчера. Это всеобщее убеждение поддерживается вескими аргументами, которые мы подробно обсудим в следующей главе: если сейчас мы живем в минимуме кривой энтропии, то никакие наши воспоминания о прошлом не могут быть достоверными, а осмыслить такой вариант Вселенной попросту невозможно.
Итак, если нам правда интересно, какие механизмы работают под капотом нашего мира, мы должны в дополнение к принципу безразличия учитывать также и гипотезу о прошлом. Когда дело доходит до выбора микросостояний из нашего макросостояния, мы не считаем их все одинаково вероятными: мы выбираем только те микросостояния, которые совместны с условием намного более низкой энтропии в прошлом (а их очень, очень мало!), и лишь им присваиваем равные значения вероятности.[148]
Однако эта стратегия поднимает важнейший вопрос: почему мы считаем, что гипотеза о прошлом верна? Во времена Больцмана никто и понятия не имел об общей теории относительности или Большом взрыве, не говоря уж о квантовой механике или квантовой гравитации. И все же вопрос остается, хотя и приобретает более конкретную форму: почему непосредственно после Большого взрыва у Вселенной была такая низкая энтропия?