Век самопознания. Поиски бессознательного в искусстве и науке с начала XX века до наших дней — страница 38 из 102


Рис. 15–6.


Куффлер понимал, что взаимодействие возбуждающих и тормозных нейронов, управляющих конфигурацией импульсов одного нейрона-мишени, отражает основной принцип устройства всей нервной системы. Нейроны в мозге суммируют возбуждающую и тормозную информацию, получаемую из разных источников, и определяют, передавать ли информацию дальше. Британский физиолог Чарльз Шеррингтон (получивший в 1932 году Нобелевскую премию за изучение взаимодействия нейронов спинного мозга) называл этот механизм интегративной деятельностью нервной системы. Шеррингтон утверждал, что ключевая функция нервной системы состоит в оценивании сравнительной значимости входящей информации и использовании оценки для принятия решений о действиях.

Результаты экспериментов, посвященных изучению синаптического возбуждения и торможения у раков, вдохновили Куффлера на исследования более сложных взаимодействий нейронов в сетчатке млекопитающих. Он занялся не только механизмами синаптической передачи, но и механизмами обработки информации в одной из сенсорных систем мозга. Как Куффлер впоследствии говорил, он решил разобраться в том, как работает мозг.


Куффлер, а впоследствии Хьюбел и Визель (рис. 15–7) изучали зрительное восприятие животных. Они понимали, что у разных нейронов могут быть разные функции, механизмы работы и свойства, а значит, чтобы разобраться в работе мозга, нужно разобрать его по клетке. Куффлер, а затем Хьюбел и Визель вводили в сетчатку животных микроэлектроды и регистрировали возникающие в клетках сетчатки электрические импульсы. Электроды были присоединены к осциллографу и репродуктору с усилителем, что позволяло наблюдать потенциалы действия клетки на осциллографе и одновременно слышать их треск. Так исследователи изучали, как клетки разных отделов зрительной системы реагируют на элементарные стимулы и как информация трансформируется на пути от сетчатки через передатчики в направлении высших зрительных зон мозга.


Рис. 15–7. Дэвид Хьюбел (1926–2013) и Торстен Визель (р. 1924; справа).


Куффлер начал с регистрации потенциалов действия, генерируемых отдельными ганглионарными клетками в центре и на периферии сетчатки. Он обнаружил, что эти специализированные нейроны получают от колбочек и палочек информацию о зрительных образах, кодируют ее в виде последовательностей импульсов и передают в мозг. Регистрируя эти импульсы, Куффлер сделал первое неожиданное открытие: ганглионарные клетки сетчатки никогда не спят. Они самопроизвольно генерируют потенциалы действия даже без света или какой-либо другой стимуляции (рис. 15–8). Как в устройстве автоматического пуска, эта медленная самопроизвольная активность создает фон для поиска сигналов извне, так что любые зрительные стимулы не запускают возбуждение нейронов, а лишь меняют его конфигурацию. Возбуждающие стимулы усиливают это возбуждение, а тормозные – ослабляют.


Рис. 15–8. Устройство рецептивного поля ганглионарной клетки с on-центром


Вскоре Куффлер установил, что самый эффективный способ менять конфигурацию самопроизвольного возбуждения ганглионарных клеток – не светить на всю сетчатку сильным рассеянным светом, а освещать одно пятнышко на ее поверхности. Эксперименты подтвердили, что каждый ганглионарный нейрон получает информацию от собственного участка сетчатки – рецептивного поля, на которое проецируется крошечная часть картины. Каждый из этих нейронов реагирует на стимуляцию своего рецептивного поля и передает информацию в мозг только от него. Кроме того, Куффлер обнаружил, что частота возбуждения ганглионарных нейронов зависит от силы света, падающего на рецептивное поле, а продолжительность их возбуждения зависит от продолжительности действия светового стимула. Поскольку вся сетчатка покрыта рецептивными полями ганглионарных клеток, то, на какой бы участок ни падал свет, некоторые из этих клеток будут на него реагировать. Наша зрительная система хорошо приспособлена к восприятию деталей.

Ганглионарные клетки с самыми маленькими рецептивными полями располагаются в центре сетчатки. Они получают информацию от наиболее плотно упакованных колбочек, отвечающих за самое изощренное зрительное восприятие (например, рассматривание деталей картины). Другие ганглионарные клетки, чуть в стороне от центра сетчатки, имеют несколько более широкие рецептивные поля и получают информацию уже от многих колбочек. С этих клеток начинается обработка грубых, цельных компонентов зрительного образа. Куффлер установил, что рецептивные поля ганглионарных клеток сетчатки постепенно увеличиваются в направлении периферии. Поэтому периферические клетки сетчатки не в состоянии обрабатывать информацию о незначительных деталях и дают лишь размытые изображения.

Методично обследуя сетчатку с помощью луча света, направляемого на рецептивные поля разных ганглионарных клеток, Куффлер сделал третье открытие. Он нашел, что ганглионарные клетки сетчатки бывают двух типов, поровну распределенных в ней и отличающихся характером реакции клеток на стимуляцию центральной и периферической частей рецептивного поля. Клетки с on-центром возбуждаются, когда крошечное пятнышко света падает в самый центр их рецептивного поля, но их возбуждение ослабевает, когда свет падает на его периферию. Клетки с off-центром, напротив, возбуждаются, когда свет падает на периферию рецептивного поля. Их возбуждение тормозится, когда свет падает в его центр (рис. 15–9).


Рис. 15–9. Ганглионарные клетки сетчатки лучше всего реагируют на контрастное освещение своих рецептивных полей. Эти поля имеют округлую форму со специ-ализированными центром и периферией. Клетки с on-центром возбуждаются при стимуляции светом центра и тормозятся при стимуляции периферии, клетки с off-центром – наоборот. Здесь показаны реакции клеток обоих типов на три разных световых стимула (стимулируемый участок рецептивного поля выделен). Паттерны активности клеток в ответ на каждый из стимулов записаны с помощью внекле-точной регистрации. Продолжительность освещения показана полоской. Kuffler 1953, с изменениями. а) Клетки с on-центром лучше всего реагируют на стимуляцию светом всей цент-ральной области их рецептивного поля. На стимуляцию некоторой части этой области они реагируют не так сильно. Освещение участка периферии рецептивного поля частично или полностью подавляет возбуждение клетки, возобновляющееся вскоре после выключения света. На рассеянное освещение всего рецептивного поля клетка реагирует слабо: эффекты освещения центра и периферии компен-сируют друг друга. б) Самопроизвольное возбуждение клеток с off-центром подавляется освещением центральной области рецептивного поля, но ненадолго усиливается после выключения света. Освещение периферии рецептивного поля усиливает возбуждение таких клеток.


Открытие принципов работы ганглионарных клеток сетчатки свидетельствовало о том, что глаза млекопитающих реагируют только на те участки зрительного образа, где сила света меняется. По сути, Куффлер выяснил, что облик объекта определяется скорее контрастом между этим объектом и его фоном, чем силой света, попадающего от этого объекта на сетчатку.


Рис. 15–10. Облик видимого объекта принципиально зависит от контраста между ним и его фоном. Правое и левое серые кольца окрашены одинаково, при этом левое кажется светлее, поскольку оно расположено на более темном фоне.


Куффлер пришел к выводу, что ганглионарные клетки сетчатки реагируют не на абсолютные показатели силы света, а на контраст между светом и темнотой. Именно поэтому такие клетки нельзя эффективно стимулировать обширными световыми пятнами или рассеянным светом: рассеянный свет падает и на тормозную, и на возбуждающую области рецептивного поля каждой клетки. Кроме того, эти результаты указали на биологические основы общего принципа работы сенсорных систем мозга – принципа пренебрежения постоянными стимулами и отчетливых избирательных реакций на контрасты. Один из примеров показан на рис. 15–10. Два серых кольца окрашены одинаково, но левое кажется светлее, потому что более темный фон создает более сильный контраст. Принципы работы ганглионарных клеток сетчатки также позволяют объяснить, почему зрительная система настолько чувствительна к неравномерности падающего на сетчатку света и почему нейроны сетчатки сильнее реагируют на резкую перемену яркости изображения или освещенности. Тем самым открытия Куффлера подтвердили прогноз Гомбриха: изучение особых зрительных стимулов позволит проникнуть в тайны нейронных механизмов зрения.


Зрительная система человека развилась в ходе эволюции в соответствии с потребностями наших предков. Ранние этапы работы этой системы, изучением которых занимался Куффлер, красноречиво говорят о действии дарвинистских механизмов. Наши глаза приспособлены для обработки поступающей извне информации. Предел остроты зрения (максимальный уровень разрешения) определяется и разрешающей способностью глаз, и плотностью колбочек в центральной ямке. Колбочки передают информацию ганглионарным клеткам сетчатки. Их рецептивные поля организованы так, чтобы извлекать важнейшую информацию о зрительных образах и сводить к минимуму избыточность получаемых сведений. Принцип их организации позволяет не тратить впустую сигнальные способности всей сетчатки. Размеры центра рецептивного поля ганглионарных клеток относительно размеров его периферии также наилучшим образом приспособлены для выделения информативных элементов образа.

Куффлер продемонстрировал, что сетчатка осуществляет активное преобразование зрительной информации и ее кодирование в виде последовательностей потенциалов действия. В этих процессах задействовано огромное число фоторецепторов и других параллельно работающих нервных клеток. Вычислительная мощность этих процессов весьма велика. Получаемые на выходе из сетчатки последовательности электрических импульсов поступают в латеральное коленчатое тело таламуса, а затем в кору больших полушарий, где происходит деконструкция образов и их последующая реконструкция в виде внутренних представлений. Куффлер доказал исключительную важность контраста для сигнальной активности сетчатки, чем подготовил почву для еще более удивительных открытий.