рис. II–23). Эти рисунки создают иллюзию трехмерности, потому что мозг зрителя способен извлекать информацию о высоте, ширине и форме изображенных объектов.
Вообще говоря, умение зрительной системы интерпретировать контуры линейного рисунка как очертания – это только одно из проявлений нашей способности видеть на плоскости трехмерные фигуры. Изобразительное искусство демонстрирует лишь особенно наглядные проявления требуемой для этого творческой реконструкции. Сетчатка извлекает ограниченный набор информации, и мозгу приходится постоянно прибегать к догадкам и допущениям. Каким бы реалистичным ни было изображение, оно всегда остается плоским и требует мысленной “доработки”.
Патрик Кавана называет приемы, используемые художниками для создания таких иллюзий, “упрощенной физикой”. Эти приемы позволяют мозгу интерпретировать двумерные изображения как трехмерные:
Подобные нарушения законов физики (невозможные тени, цвета, отражения и контуры) часто остаются незамеченными и не мешают зрителю понимать, что изобразил художник. Именно этим они интересны нейробиологу. Поскольку мы их не замечаем, они свидетельствуют о том, что зрительная система нашего мозга трактует окружающий мир с помощью упрощенного, неполного набора законов физики. Художники прибегают к альтернативной физике потому, что ее отступления для зрителя не имеют значения. Это позволяет художнику “срезать углы”, изображая зрительные ориентиры экономнее и организуя поверхности и освещение в соответствии с замыслом произведения, а не требованиями материального мира[147].
Кавана утверждает, что мозг не склонен применять к художественным изображениям законы физики. Искусство позволяет выходить за рамки возможного: мы редко замечаем на картинах неправдоподобные или невозможные цвета, освещение, тени и отражения. Это одинаково справедливо и для случаев очевидного нарушения перспективы кубистами, и для кардинального усиления яркости цвета в фовизме и импрессионизме. Однако во всех этих случаях нарушения проходят незамеченными и не мешают правильному пониманию картины.
Терпимость мозга к иллюзиям и упрощению законов физики доказывает его замечательную гибкость. Она с давних пор позволяла художникам допускать вольности (от легких манипуляций со светом и тенью у мастеров Возрождения до откровенных пространственных и цветовых искажений у австрийских экспрессионистов), не принося в жертву убедительность. Характер искажений, к которым мы склонны проявлять терпимость, и выраженные в них физические допущения многое говорят о механизмах осмысления мозгом зрительных образов.
Рис. 16–15. “Круги на воде”.
Исследователь зрительного восприятия Дональд Хоффман предложил собственную иллюстрацию способности нашего мозга использовать упрощенные физические законы для воссоздания того, что мы видим в произведениях искусства. Его “круги на воде” (рис. 16–15) при всем желании не получается воспринимать как плоскостное изображение. “Круги” состоят из трех частей: поднятия в центре и двух круговых волн. Хоффман обвел эти три части прерывистыми линиями. Если перевернуть рисунок (или самому встать на голову), то мы увидим иное: прерывистые линии проходят по гребням волн. Если снова перевернуть рисунок, он станет таким же, как был. Если поворачивать его медленно, можно поймать момент превращения. Эти “круги на воде” – от начала до конца порождение нашего мозга. Хоффман пишет: “Вы сами разделяете изображение на три концентрических круга, похожих на волны. Прерывистые линии, проходящие по углублениям между ними, приблизительно соответствуют границам между этими тремя частями. Вы не пассивно воспринимаете, а активно создаете эти части”[148].
Теперь мы можем оценить важность бессознательного для восприятия искусства. Кроме того, мы можем отдать должное идеям Гомбриха о роли базовых фигур в живописи. Уже древнейшие художники, создававшие наскальные рисунки в пещерах Южной Франции и Северной Испании, нашли то, что Гомбрих называл “ключами к нейронным замкам бессознательных чувств”. Исследования механизмов обработки мозгом зрительной информации (как мы поймем из следующих двух глав) позволило многое узнать о порождении бессознательным того, что “видит” наше сознание.
Глава 17Зрение высокого уровня: восприятие лиц, рук и тел
Мы познакомились с процессами обработки информации низкого и промежуточного уровней зрения, отвечающих за сборку контуров объектов из простых линий, определение границ и отделение фигур от фона. А как мы воспринимаем цельные объекты, в том числе лица, руки и тела? Какими механизмами обеспечивается “вклад зрителя”?
Результаты исследований, последовавших за открытиями Дэвида Хьюбела и Торстена Визеля, позволили разобраться в некоторых механизмах зрения высокого уровня, отвечающих за идентификацию объектов. Семир Зеки и Дэвид ван Эссен обнаружили в зрительной системе около 30 областей, обрабатывающих информацию после первичной зрительной коры и продолжающих выделение сведений о форме, цвете, движении и удаленности объектов. После выделения эти сведения отдельно поступают в высшие, когнитивные отделы мозга, в том числе в префронтальную кору, где на их основе формируется цельное восприятие видимого.
Рис. 17–1.
Выделение сведений о разных аспектах зрительной информации начинается в первичной зрительной коре. Оттуда информация передается по двум параллельным проводящим путям: “что” и “где” (рис. 17–1). По пути “что”, получающему информацию преимущественно из центра сетчатки, передаются сведения, связанные с восприятием людей, предметов, сцен и цвета, и с определением того, на что они похожи и что собой представляют. По этому пути информация поступает из первичной зрительной коры через несколько дополнительных передатчиков в нижнюю височную кору, где осуществляется ее обработка высокого уровня и формируются представления о форме и соответствии объектов, в том числе лиц и рук (рис. 17–2). В пути “что” выделяют еще два подразделения: обладающую высоким разрешением систему формы, узнающую предметы и людей на основании цвета и яркости, и обладающую низким разрешением систему цвета, определяющую цвета видимых поверхностей.
Путь “где” ведет из первичной зрительной коры в заднюю теменную. Он получает информацию преимущественно от палочек, с периферии сетчатки, и специализируется на отслеживании положения объектов в трехмерном пространстве (рис. 17–2). Путь “где” обеспечивает нас информацией, необходимой для координации движений, в том числе движений глаза, которые служат для сканирования изображений. Путь “где”, в отличие от пути “что”, нечувствителен к цвету, зато гораздо чувствительнее его к контрасту (различиям яркости) и быстрее на него реагирует, что помогает следить за движениями и воспринимать неясно видимые объекты.
Рис. 17–2.
Как координируется активность проводящих путей? Есть ли в зрительной системе отдел, куда поступают все составляющие образа объекта (сведения о его форме, цвете и местоположении)? Энн Трисман из Принстонского университета продемонстрировала, что совмещение сведений, поступающих по путям “что” и “где”, не осуществляется в каком-либо одном участке мозга. Эту проблему Трисман назвала проблемой связывания. Связывание информации, обрабатываемой в зрительной системе разными путями, происходит тогда, когда оба пути работают слаженно, а достигается эта слаженность за счет концентрации внимания.
Более того, Роберт Вурц и Майкл Голдберг из Национальных институтов здравоохранения открыли, что концентрация внимания модулирует реакцию на зрительные стимулы даже на клеточном уровне. Когда обезьяна обращает внимание на стимул, реакция нейронов на него оказывается гораздо сильнее, чем когда ее взор прикован к чему-то другому.
Как достигается избирательность внимания? Ясно, что для успешного восприятия, например, изображенного на портрете лица требуется, чтобы мы смотрели на него, и внимательно. Но поскольку мы видим отчетливо лишь те изображения, которые проецируются на центральную ямку в середине сетчатки, мы не можем рассмотреть все лицо сразу: оно слишком велико. В любой момент мы способны концентрироваться лишь на чем-то одном, поэтому быстро сканируем лицо, концентрируясь вначале на глазах, затем на губах. (Глаза служат важным индикатором эмоций, и у людей, которым трудно концентрировать на них внимание, например у аутистов или пациентов с повреждениями миндалевидного тела, возникают трудности.) Быстрые движения глаз называют саккадами. Они выполняют две функции: позволяют исследовать поле зрения с помощью центральной ямки и делают возможным зрение как таковое (если взгляд достаточно долго сфокусирован на одной точке, зрительный образ начинает блекнуть).
Такое сканирование осуществляется настолько быстро, что мы будто видим лицо целиком, но в действительности сознательно воспринимаем то, что видим, лишь в течение периодов фиксации. Результаты экспериментов с устройствами, позволяющими отслеживать движения глаз, показывают, что мы получаем впечатления от лиц и других объектов видимого мира по частям, переходя от одного периода фиксации к другому. Саккады позволяют не только рефлекторно переводить взгляд на объекты, появляющиеся на периферии поля зрения, но и активно собирать зрительную информацию.
Но мозг сам определяет, куда двигаться глазам, и принимает соответствующие решения путем проверки гипотез о природе увиденного. Когда взгляд фокусируется на лице, глаза посылают в мозг сигналы, анализируемые им в свете определенной гипотезы. Это человеческое лицо или нет? Мужское или женское? Какого возраста этот человек? Модели окружающего мира, конструируемые мозгом, мгновение за мгновением оживляют наше зрительное внимание. Мы живем как бы одновременно в двух мирах, диалог между которыми составляет зрительные ощущения: в окружающем мире, изображение участков которого проецируется на центральную ямку сетчатки и обрабатывается в рамках восходящих процессов, и во внутреннем мире моделей нашего восприятия, когнитивных функций и эмоций, оказывающих нисходящее влияние на информацию, поступающую от сетчатки.