На сегодняшний день (на январь 2012 г.) наибольшими известными парными простыми являются числа 3 756 801 695 685 × 2666 669 ± 1, содержащие по 200 700 десятичных знаков. Они были найдены в 2011 г. в рамках проекта распределенных вычислений PrimeGrid. В 1915 г. Вигго Брун при помощи одного из вариантов решета Эратосфена доказал, что сумма чисел, обратных всем парным простым, сходится, в отличие от суммы чисел, обратных всем простым. В этом смысле парные простые встречаются относительно редко. При помощи аналогичных методов он доказал также, что существует бесконечно много целых n, таких, что n и n + 2 имеют не больше девяти простых делителей. Харди и Литлвуд при помощи своих эвристических методов пришли к выводу, что количество пар простых, меньших x, асимптотически приближается к
где a — константа, равная приблизительно 0,660161. Идея в том, что в данном случае можно считать простые числа возникающими случайно с частотой, которая делает общее число простых вплоть до x приблизительно равным x/log x. Аналогичных гипотез и эвристических формул существует множество, но строгих доказательств для них опять же не существует.
Да, в математике есть сотни открытых вопросов, имеющих отношение к простым числам. Одни из них просто любопытны, другие глубоки и имеют большую важность. С некоторыми вопросами из последней категории нам еще предстоит встретиться в главе 9. Ведь несмотря на все успехи математики за последние 2500 лет, скромные простые числа не потеряли ни своей притягательности, ни загадочности.
3. Тайна числа π. Квадратура круга
Простые числа известны давно, но круг — еще более древнее понятие. И именно он породил великую задачу, на решение которой ушло больше 2000 лет. Речь идет об одной из взаимосвязанных геометрических задач, корни которых уходят глубоко в античные времена. Главное действующее лицо этой истории — число π (греческая буква «пи»), знакомое нам по школьной программе в связи с окружностями и сферами. Численно это число равно 3,14159 и еще чуть-чуть; нередко также используется приблизительное значение 22/7. Десятичные знаки в записи π никогда не заканчиваются и не повторяются в одной и той же последовательности снова и снова. Нынешний рекорд вычисления точного значения числа π составляет 10 трлн знаков после запятой. Этот результат Александр Йи и Шигеру Кондо опубликовали в октябре 2011 г. Расчеты такого рода важны как способ испытания быстрых компьютеров или новых, еще более хитроумных методик вычисления числа π, но от численного результата как такового почти ничего не зависит. Причина интереса к числу π не в том, что без него невозможно вычислить длину окружности. Это странное число то и дело мелькает в самых разных областях математики, причем не только в формулах, имеющих отношение к кругам и сферам, и заводит в невероятные дебри. Тем не менее школьные формулы тоже важны, к тому же они отражают древнегреческое происхождение π.
Там одной из величайших проблем считалась нерешенная задача о квадратуре круга. В современном языке эта фраза часто используется иносказательно и означает безнадежное, бессмысленное или тщетное предприятие. Как многие общеупотребительные фразы, берущие начало в научной терминологии, эта с течением времени не раз меняла значение{5}. В греческие времена попытка найти квадратуру круга представлялась вполне разумным начинанием. Разница формы этих фигур — прямые или изогнутые границы — никакого значения не имеет: многие аналогичные задачи решаются{6}. Однако со временем выяснилось, что эта конкретная задача не может быть решена заданными методами. Чтобы это доказать, пришлось проявить изобретательность и сделать серьезные теоретические выкладки, но общую идею доказательства понять все же можно.
В математике под квадратурой круга понимают построение квадрата, равного по площади данному кругу, при помощи традиционных евклидовых методов. Вообще говоря, греческая геометрия допускала и другие методы, поэтому важно сразу определить, какие из них следует использовать. Но тогда неразрешимость задачи говорит только об ограниченности выбранных методов; из нее не следует, что мы не в состоянии определить площадь круга. Просто делать это придется иначе. Доказательство неразрешимости задачи о квадратуре круга помогает понять, почему греческие геометры не смогли найти требуемое построение: его просто не существует. Если разобраться, то именно поэтому им пришлось прибегать к довольно странным, чуть ли не эзотерическим методам. Так что окончательное решение этой задачи, хотя и отрицательное, помогло ученым прояснить довольно серьезную историческую загадку. Оно позволило также больше не терять времени на поиски несуществующего построения — хотя, к сожалению, всегда найдутся те, кто не сможет или не захочет принять окончательный результат, как бы тщательно его ни разжевывали{7}.
В «Началах» Евклида для геометрических построений используются идеальные версии двух математических инструментов: линейки и циркуля. (Поскольку у циркуля две ножки, про него, вероятно, следовало бы говорить циркули, — ведь бумагу мы режем ножницами, а не одним ножницем, но я буду пользоваться традиционной терминологией.) При помощи этих инструментов геометры «чертят» на умозрительном листе бумаги — евклидовой плоскости.
Форма инструментов определяет их возможности. Циркуль представляет собой два прямых жестких стержня, соединенных шарниром. Конец одного стержня заострен, на конце другого закреплен заостренный грифель. При помощи циркуля можно нарисовать круг или часть круга определенного радиуса с центром в определенной точке. Линейка еще проще: у нее есть прямой край, по которому можно провести прямую линию. В отличие от линеек, которые сегодня можно купить в любом канцелярском магазине, линейка Евклида не имеет разметки, и это важное ограничение для математического анализа ее возможностей.
Почему речь идет об идеальных версиях инструментов, понятно: считается, что с их помощью проводятся бесконечно тонкие линии. Более того, все прямые получаются идеально прямыми, а окружности — идеально круглыми. Бумага также идеально плоская и ровная. Еще один ключевой элемент евклидовой геометрии — представление об идеальной точке. Точка ставится на бумаге, но физически такая точка невозможна: она не имеет размера. «Точка, — говорит Евклид в первой фразе своих “Начал”, — это то, что не имеет частей». По описанию она немного напоминает атом или, если вы немного в курсе современной физики, элементарную частицу, но в сравнении с геометрической точкой и атом, и частица — гигантские объекты. Однако в рамках обыденных представлений идеальная точка Евклида, атом и карандашная точка на бумаге одинаково хорошо годятся для геометрических построений.
В реальном мире идеал недостижим, как бы мы ни старались заточить карандаш и какой бы гладкой ни делали бумагу. Но в данном случае идеализм — достоинство, поскольку идеализация значительно упрощает математику. К примеру, пересечение двух реальных карандашных линий представляет собой небольшую размытую область в виде параллелограмма, но математические линии пересекаются исключительно в точке. Откровения, полученные из идеальных окружностей и линий, нередко можно перенести в реальный мир и применить к реальным несовершенным фигурам. Именно так работает волшебство математики.
Две точки определяют единственную прямую, которая через них проходит. Чтобы построить эту прямую, прикладываем нашу идеальную линейку так, чтобы ее сторона проходила через обе точки, и проводим вдоль нее идеальным карандашом. Две точки также определяют круг: выберите одну из точек — она станет центром окружности — и поставьте в нее острие циркуля; затем разведите ножки циркуля так, чтобы кончик грифеля встал на вторую точку. А теперь ведите грифель по дуге, аккуратно удерживая острие в центре. Две прямые определяют единственную точку пересечения — если, конечно, они не параллельны; в этом случае прямые не пересекаются, зато широко распахивается логический ящик Пандоры. Прямая и окружность определяют две точки, если пересекаются, и одну, если прямая лишь касается окружности; если окружность слишком мала, чтобы дотянуться до прямой, пересечения не будет. Точно так же две окружности могут пересекаться в двух точках, в одной или не пересекаться вовсе.
Расстояние — фундаментальная концепция, без которой немыслимо современное прочтение евклидовой геометрии. Расстояние между двумя точками измеряется по прямой, их соединяющей. Евклид, разрабатывая свою геометрию, обходился без явно выраженной концепции расстояния, но он и без этого мог определить, когда два отрезка прямой имеют одинаковую длину. Это очень просто: достаточно поставить ножки циркуля на концы одного отрезка, перенести инструмент ко второму отрезку и посмотреть, встанут ли ножки на его концы. Если встанут, то длины этих отрезков одинаковы; если нет — нет. Эта процедура вовсе не требует измерения реальных длин.
Из этих базовых составляющих геометры могут построить более интересные формы и конфигурации. Три точки определяют треугольник, если только не лежат на одной прямой. Две прямые, пересекаясь, образуют угол. Особенно важен прямой угол, а развернутый угол соответствует двум составленным вместе прямым углам. И так далее и тому подобное, до бесконечности. «Начала» Евклида включают в себя 13 книг и с каждой книгой все глубже зарываются в следствия этих простых начал.
Основное содержание «Начал» — теоремы, строительный материал геометрии. Кроме того, Евклид объясняет, как решать геометрические задачи при помощи «построений», сделанных с применением линейки и циркуля. Как, имея две точки, соединенные отрезком прямой, получить среднюю точку отрезка? Как разделить отрезок на три равные части? Как, имея угол, построить другой угол, равный в точности половине первого? Но некоторые простые построения неожиданно оказались неуловимыми. К примеру, трисекция угла: постройте угол, который ровно втрое меньше заданного. С отрезками такое проходит, но для углов никому так и не удалось отыскать соответствующий метод. С любой степенью приблизительности — да, пожалуйста. Построить точно при помощи циркуля и линейки — нет, увольте. Однако в реальной жизни никому обычно не надо делить угол ровно натрое, так что этот конкретный вопрос не вызвал особых проблем.