Это свойство алгебры очень существенно влияет на геометрические построения, сделанные при помощи линейки и циркуля. Любое подобное построение, каким бы сложным оно ни было, состоит из последовательности простых шагов. Каждый шаг дает новые точки в местах, где пересекаются две прямые, две окружности или прямая и окружность. Каждая из этих прямых и окружностей определяется ранее построенными точками. Переводя геометрию на язык алгебры, можно доказать, что алгебраическое уравнение, соответствующее пересечению двух прямых, обязательно линейное, а пересечению прямой и окружности или двух окружностей — квадратное. Причина в том, что уравнение окружности содержит x², но не содержит более высоких степеней x. Поэтому каждый отдельный этап построения соответствует решению уравнения первого или второго порядка, не выше.
Более сложные построения представляют собой последовательности этих базовых операций. Некоторое количество алгебраических преобразований позволяет нам сделать вывод, что каждая координата любой точки, которую можно получить геометрическим построением при помощи линейки и циркуля, является решением полиномиального уравнения с целыми коэффициентами, степень которого представляет собой одну из степеней двойки. Это значит, что степень уравнения должна быть равна одному из чисел 1, 2, 4, 8, 16 и т. д.{9} Это необходимое условие существования такого построения. При должном старании из него можно извлечь точную характеристику, которой должен обладать правильный многоугольник, чтобы его можно было построить. Внезапно из сложной геометрической паутины появляется на свет аккуратное алгебраическое условие, причем применимое к любому построению. Необязательно даже знать, что при этом строится: достаточно, чтобы при построении использовались только линейка и циркуль.
Гаусс был знаком с этой элегантной идеей. Он знал также (к такому выводу пришел бы любой компетентный математик), что вопрос о том, какой правильный многоугольник можно построить при помощи линейки и циркуля, сводится к частному случаю, в котором многоугольник имеет простое число сторон. Чтобы понять, почему так происходит, представьте себе составное число, к примеру 15, т. е. 3 × 5. Любое гипотетическое построение правильного 15-угольника автоматически даст нам правильный же треугольник (возьмите каждую пятую вершину) и пятиугольник (каждую третью), как на рис. 6. Приложив еще немного усилий, можно так скомбинировать построения для трех— и пятиугольников, чтобы получить в результате 15-угольник{10}. Числа 3 и 5 — простые, и к ним приложима та же общая идея. Так что Гаусс сосредоточился на многоугольниках с простым числом сторон и задался вопросом о том, на что похоже нужное уравнение. Ответ оказался удивительно изящным. Так, построение правильного пятиугольника эквивалентно решению уравнения x5 − 1 = 0. Замените 5 любым другим простым числом — и соответствующее утверждение тоже будет истинным.
Степень этого многочлена — 5, и это не степень двойки, о которой я говорил; тем не менее построить правильный пятиугольник можно. Гаусс быстро определил, почему: это уравнение раскладывается на две части — первого и четвертого порядка. И 1, и 4 являются степенями двойки; оказывается к тому же, что ведущую роль здесь играет уравнение четвертой степени. Чтобы понять, почему нам следует связать это уравнение с геометрией, придется привлечь новый тип числа, который обходит вниманием школьная математика, но без которого на любом более высоком уровне не обойтись. Речь идет о комплексных числах; их определяющим свойством является то, что в системе комплексных чисел из −1 можно извлечь квадратный корень.
Обычное «действительное» число может быть положительным и отрицательным, но его квадрат в том и другом случае положителен, так что −1 не может быть квадратом какого бы то ни было действительного числа. В некоторых случаях это сильно мешает; математики даже изобрели новый тип «воображаемого», или «мнимого», числа, квадрат которого равен −1. Нужно было как-то обозначить это новое число, для чего воспользовались первой буквой слова imaginary (воображаемый) — i. Обычные алгебраические операции — сложение, вычитание, умножение, деление — привели к возникновению комбинаций действительных и мнимых чисел, таких как 3 + 2i. Такие числа называют комплексными, что вовсе не означает «сложные», а просто указывает на то, что они состоят из двух частей: 3 и 2i. Если действительные числа располагаются на известной числовой прямой, как числа на линейке, то комплексные числа лежат на числовой плоскости, на которой мнимая ось располагается под прямым углом к действительной, а вместе они образуют систему координат (см. рис. 7, слева).
Уже 200 лет математики считают комплексные числа фундаментальной концепцией своей науки. Мы сегодня признаем, что логически комплексные числа имеют ту же основу, что и более знакомые «действительные» — ведь те тоже, подобно всем математическим структурам, представляют собой абстрактное понятие, а не реальную физическую вещь. Комплексные числа широко использовались еще до Гаусса, но их статус оставался неясным, пока Гаусс и другие математики не сорвали с них завесу тайны, раскрыв неожиданную и парадоксальную причину их привлекательности: несмотря на загадочность и неясный смысл, комплексные числа ведут себя гораздо лучше действительных. Они внесли недостающую составляющую, которой не хватало действительным числам, — обеспечили любому алгебраическому уравнению полный набор решений.
Простейший пример — квадратные уравнения. Одни из них имеют по два действительных решения, другие — не имеют ни одного. К примеру, решениями уравнения x² − 1 = 0 являются 1 и −1, а уравнение x² + 1 = 0 решений не имеет. Промежуточное положение занимает x² = 0, единственное решение которого равно 0, но в некотором смысле это единственное решение «повторяется дважды»{11}. Если же мы разрешим комплексные решения, то окажется, что x² + 1 = 0 тоже имеет два решения: i и — i. Гаусс не стеснялся пользоваться комплексными числами; мало того, его докторская диссертация содержала первое логически безупречное доказательство фундаментальной теоремы алгебры: число комплексных решений любого полиномиального уравнения (если корректно посчитать кратные корни) равняется степени уравнения. Поэтому квадратные уравнения (второй степени) всегда имеют по два комплексных решения, кубические (третьей степени) — по три и т. д.
Уравнение x5 − 1 = 0, определяющее, как я уже сказал, правильный пятиугольник, — это уравнение пятой степени, поэтому и комплексных решений у него пять. Действительное решение одно: x = 1. Где же остальные четыре? Они представляют собой четыре вершины правильного пятиугольника на комплексной плоскости, притом что x = 1 — это пятая вершина (см. рис. 7, справа). Это соответствие — удачный пример математической красоты: элегантная геометрическая фигура становится элегантным уравнением.
Вспомним, однако, о том, что эти пять точек являются решениями уравнения пятой степени, а 5 — это не степень двойки. Но, как уже говорилось, уравнение пятой степени раскладывается на две части со степенями 1 и 4; эти части называют его неприводимыми делителями.
(«Неприводимость» означает, что у этих многочленов уже нет делителей, как у простых чисел.) Первый делитель дает единственное действительное решение x = 1. Второй делитель дает четыре комплексных решения — и четыре вершины пятиугольника. Так что с комплексными числами все выглядит гораздо разумнее и элегантнее.
Часто сложно понять, каким путем математики прошлого приходили к новым открытиям, потому что в те времена было принято представлять только конечный результат размышлений и оставлять в стороне все ошибочные шаги, которые были сделаны в ходе исследования. Эта проблема часто осложняется и тем, что естественный ход мысли в прошлом выглядел иначе, чем сегодня. Гаусс, в частности, широко известен своей склонностью заметать следы и публиковать только конечный, тщательно отшлифованный анализ. Однако в том, что касается исследований Гаусса по построению 17-угольника, материала у нас достаточно: окончательная публикация содержит достаточно ценных указаний.
Его отправная точка новизной не отличалась. И до Гаусса кое-кто из математиков понимал, что приведенный выше анализ правильных многоугольников работает в общем случае. Построение многоугольника с числом сторон n эквивалентно решению уравнения xⁿ − 1 = 0 в комплексных числах. Более того, этот многочлен раскладывается на два многочлена вида
Опять же первый множитель дает действительное решение x = 1, а остальные n − 1 решений получаются из второго множителя. Если n нечетное, все они комплексные; если n четное, одно из них становится вторым действительным решением x = −1.
Однако Гаусс заметил то, что просмотрели все остальные: иногда второй делитель можно выразить через несколько квадратных уравнений. Не представить в виде произведения более простых множителей, поскольку это невозможно, а решить с использованием уравнений, коэффициенты которых решают другие уравнения. Ключевым фактором — слабым звеном всей задачи — является одно элегантное свойство алгебраических уравнений, возникающее, когда мы решаем их подобным образом одно за другим. Такой расчет всегда эквивалентен решению единственного уравнения, но, как правило, более высокой степени. Повышение степени — цена, которую мы платим за уменьшение количества уравнений. Технически эта процедура может оказаться достаточно сложной и путаной, но одно мы можем предсказать заранее: какая получится степень. Для этого достаточно перемножить степени всех последовательных многочленов.