В 1882 г. Фердинанд фон Линдеман несколько усовершенствовал метод Эрмита и доказал, что если ненулевое число является решением некоего алгебраического уравнения, то e в степени этого числа не является решением никакого алгебраического уравнения. Затем он воспользовался соотношением, известным еще Эйлеру и связывающим π, e и мнимое число i, — знаменитой формулой eiπ = −1. Предположим, что π удовлетворяет некоему алгебраическому уравнению. То же можно сказать и про iπ, а по теореме Линдемана получим, что −1 не удовлетворяет никакому алгебраическому уравнению. Это очевидно неверно: −1 является решением уравнения x + 1 = 0. Единственный выход из этого логического противоречия заключается в том, что π не удовлетворяет никакому алгебраическому уравнению, т. е. π трансцендентно. А это означает, что задача квадратуры круга неразрешима.
Путь от евклидовой геометрии к доказательству Линдемана получился долгим и кружным. Но математики, хоть и через две с лишним тысячи лет, все же добились своего. Однако вся эта история не просто сообщает нам о невозможности квадратуры круга. Это наглядный урок того, как вообще решаются великие математические задачи. Во-первых, математикам потребовалось точно сформулировать, что они имеют в виду, говоря о «геометрическом построении». Им пришлось определить общие черты таких построений и понять, как эти черты ограничивают возможности построений. Для поиска общих свойств потребовалось связать геометрию с другой областью математики — алгеброй. Но при решении алгебраических задач, даже не самых сложных, таких как построение правильных многоугольников, не обойтись без теории чисел. Сложный случай числа π потребовал дополнительных новшеств, и задачу пришлось перенести в еще одну область математики — математический анализ.
Ни один из перечисленных шагов не был простым или очевидным. Уже после того, как основные идеи были высказаны, потребовалось еще около 100 лет, чтобы окончательно доработать доказательство. Математики, бившиеся над этой задачей, были лучшими умами своего времени, а по крайней мере один из них входит в число величайших умов всех времен. Решение подобных задач помимо глубокого понимания математики требует настойчивости и изобретательности. Иногда на это уходят годы сосредоточенных усилий, на первый взгляд, по большей части бесплодных. Но представьте, что чувствует математик, когда его настойчивость приносит плоды, и ему наконец удается расколоть крепкий орешек, над которым человечество билось не один век. Как сказал президент Джон Кеннеди в 1962 г. в одной из речей, посвященных Лунной программе, «мы решили… это сделать… не потому, что это просто, а потому, что это сложно».
Мало что в математике имеет конец, и история числа π — не исключение. И сегодня время от времени появляются поразительные новые открытия, имеющие к нему отношение. В 1997 г. Фабрис Беллар объявил, что триллионная цифра числа π в двоичном выражении — единица. Замечательным это заявление делает не собственно факт. Поразительно то, что он не вычислял ни одной из предыдущих цифр. Он просто извлек одну конкретную цифру, что называется, из воздуха.
Такой расчет оказался возможен благодаря любопытной формуле для π, которую открыли Дэвид Бэйли, Питер Боруэйн и Саймон Плафф в 1996 г. Она может показаться несколько сложноватой, но все же посмотрим:
Большой знак ∑ означает «просуммировать» на заданном диапазоне. Здесь n изменяется от 0 до бесконечности (∞). На самом деле Беллар пользовался формулой, которую вывел сам с использованием аналогичных методов и расчет по которой ведется чуть быстрее:
Ключевая особенность этих формул в том, что многие из используемых в них чисел — 1, 4, 32, 64, 256, а также 24n и 210n — являются степенями двойки, что, конечно, сильно упрощает расчеты в двоичной системе, которая используется для внутренних операций в компьютерах. После этого открытия хлынул целый поток новых формул для π и некоторых других интересных чисел. Рекорд вычисления одиночных двоичных цифр числа π обновляется регулярно: в 2010 г. Николас Ши из Yahoo рассчитал двухквадрильонную двоичную цифру π, которой оказался 0.
При помощи тех же формул можно находить отдельные цифры числа π в арифметических операциях с основаниями 4, 8 и 16. Ни для каких других оснований ничего подобного не известно; в частности, мы не можем вычислять десятичные цифры по отдельности. Существуют ли в принципе такие формулы? До открытия формулы Бэйли — Боруэйна — Плаффа никому даже в голову не приходило, что можно это делать хотя бы в двоичной системе.
4. Загадки картографии. Теорема о четырех красках
Многие великие задачи уходят корнями в глубокие и сложные вопросы давних и хорошо известных областей математики. Это те случаи, когда серьезные препятствия вдруг возникают уже после того, как эта область была тщательно изучена. Они, как правило, имеют технический характер, и все заинтересованные лица заранее знают, что они очень сложны, — еще бы, ведь многие специалисты пытались одолеть их и потерпели неудачу. При этом для соответствующей области часто уже разработаны множество мощных методик и объемный математический аппарат, которым может воспользоваться всякий подготовленный человек, но при этом, если задача до сих пор не решена, значит, все очевидные способы воспользоваться этими методиками уже испробованы и не сработали. Так что для решения этой задачи нужно либо использовать испытанные инструменты каким-то другим способом, либо изобретать новые.
Бывало и так, и этак.
Но существуют великие задачи, у которых все иначе. Они появляются из ниоткуда — небрежный чертеж на песке, заметка на полях книги, мимолетная причуда. Их формулировки просты, но поскольку вокруг них нет обширного математического фона, то нет и традиционных методов и подходов к ним. Иногда проходит много лет, прежде чем становится ясен уровень сложности задачи: кажется, что должен существовать какой-то хитрый, но несложный трюк, при помощи которого ее можно решить, и что решение не займет и полстранички. Задача о четырех красках относится именно к этой категории. Прошло не одно десятилетие, прежде чем математики начали осознавать, насколько она сложна. Мало того, большую часть этого времени все думали, что она уже решена, причем именно на нескольких страничках. Вообще, задача казалась второстепенной, и мало кто принимал ее всерьез, а когда это все же происходило, то в существовавшем вроде бы решении обнаруживались изъяны. Окончательное решение устранило все недостатки, но к тому моменту дискуссия стала настолько сложной, что пришлось привлекать на помощь мощные компьютеры.
В конечном итоге оба типа задач, несмотря на разное происхождение, схожи тем, что решение тех и других невозможно без новых подходов. Несмотря на то что задачи первого типа коренятся в хорошо изученных областях математики, традиционных методов для их решения не хватает. А задачи второго типа не принадлежат ни к одной известной области — более того, стимулируют возникновение новых, — и поэтому традиционных методов, которые можно было бы к ним применить, просто не существует. В обоих случаях решение задачи требует изобретения новых методов и установления новых связей с существующим массивом математических знаний.
Происхождение задачи о четырех красках известно, и оно — не математическое. В 1852 г. молодой южноафриканский математик и ботаник Фрэнсис Гутри, готовившийся к получению ученой степени по юриспруденции, попытался раскрасить графства на карте Англии. Он хотел быть уверенным, что любые два смежных графства можно будет раскрасить в разные цвета, чтобы границы между ними были хорошо различимы. Гутри выяснил, что для выполнения задачи ему будет достаточно четырех различных цветов, и после некоторого количества экспериментов убедил себя в том, что это заявление будет верным для абсолютно любой карты. Говоря о «смежных» графствах, он имел в виду, что эти графства имеют общую границу ненулевой длины; если же два графства соприкасались в точке или, к примеру, в нескольких изолированных точках, их можно было при необходимости раскрасить в один и тот же цвет. Без этой оговорки число цветов может быть бесконечным, поскольку в одной точке может встретиться неограниченное число регионов (см. рис. 8 слева).
Заинтересовавшись, не является ли его вывод известной математической теоремой, Гутри задал этот вопрос своему брату Фредерику, изучавшему в то время математику под руководством известного, но эксцентричного ученого Огастеса де Моргана в Университетском колледже Лондона. Де Морган не знал ответа на этот вопрос, поэтому написал еще более известному математику — ирландцу сэру Уильяму Гамильтону:
«Один мой студент [позже выяснилось, что это был Фредерик Гутри] попросил меня сегодня объяснить один факт, про который мне ничего не было известно, — и я до сих пор не уверен, что это действительно факт. Он говорит, что если некая фигура разделена на части любым способом и ее части раскрашены по-разному, так что фигуры с общей границей в виде линии любой длины окрашены в разные цвета, то для этого может потребоваться четыре краски, но не больше… Вопрос: нельзя ли придумать случай для пяти или более красок… Что скажете? И был ли этот факт, если это правда, замечен ранее?»
Фредерик позже упоминал некое «доказательство», предложенное его братом, но говорил также, что основной идеей там был рисунок, примерно соответствующий рис. 8, а он доказывает лишь, что меньше, чем четырьмя красками, не обойдешься.
Ответ Гамильтона был краток: «Я вряд ли займусь в ближайшее время вашим “кватернионом” красок». В то время Гамильтон работал над алгебраической системой, которой суждено было на всю жизнь стать его пунктиком и любимым коньком. Это система, аналогичная комплексным числам, но включающая четыре типа чисел вместо двух (действительные и мнимые) в комплексной системе. Свои числа он называл «кватернионами». Предложенная им система до сих пор сохраняет свое значение в математике. Мало того, сегодня ее роль, вероятно, более важна, чем во времена Гамильтона. Но высот, о которых мечтал автор, она так и не достигла. Гамильтон просто пошутил в академическом стиле, употребив слово «кватернион» по отношению к четырем краскам. Долгое время действительно казалось, что между его системой и задачей о четырех красках нет никакой связи.