Если мы работаем всего лишь с двумя слоями, разница между двумя вариантами не играет никакой роли. Мы можем без труда получить первый вариант укладки, просто повернув второй вариант на 60°. Эти варианты одинаковы «с точностью до симметрии». Но после укладки первых двух слоев у нас появляются два по-настоящему разных варианта для третьего слоя. Каждый новый слой имеет две системы выемок, показанных на рис. 19 слева светлыми и темными точками. В одной из них выемки соответствуют центрам шариков предыдущего слоя, которые на рис. 19 справа видны как светло— серые треугольнички. Во второй выемки соответствуют выемкам предпредыдущего слоя и видны на рис. 19 справа как треугольнички с вписанными в них крохотными белыми шестиугольничками. Чтобы получить гранецентрированную кубическую решетку, мы должны использовать для третьего слоя темно-серые позиции, а затем повторять такой порядок укладки до бесконечности.
Не до конца очевидно, однако, что результатом такой укладки станет гранецентрированная кубическая решетка. Где же здесь квадраты? Дело в том, что квадраты в такой укладке присутствуют, но располагаются наклонно, под углом. На рис. 20 показаны шесть последовательных треугольных слоев, из которых удалена часть шариков. Стрелками указаны ряды и столбцы скрытой внутри квадратной решетки. Все слои, параллельные данному, тоже выстроены по квадратной решетке, а между собой соотносятся в точности так же, как я выстраивал гранецентрированную кубическую решетку.
Насколько компактна такая упаковка? Мы измеряем компактность (эффективность) упаковки ее плотностью: долей общего объема, занимаемой шариками{20}. Чем больше плотность, тем компактнее упаковка. Кубики укладываются в параллелепипед с плотностью 1, заполняя весь объем. Между шариками, очевидно, в любом случае останутся промежутки, так что плотность их упаковки меньше единицы. Плотность гранецентрированной кубической решетки составляет в точности π/√18, это примерно 0,7405. При такой упаковке шарики заполняют чуть меньше трех четвертей пространства, и гипотеза Кеплера утверждает, что никакая упаковка шариков не может иметь плотность больше этой.
Я сформулировал все это достаточно осторожно. Я не сказал, что «плотность гранецентрированной кубической решетки выше, чем любой другой». Такое утверждение было бы неверным, и в этом несложно убедиться. Для этого вернемся к построению гранецентрированной кубической решетки из треугольных слоев. Я сказал, что после укладки первых двух слоев возникает два варианта укладки третьего. Гранецентрированная кубическая решетка возникает во втором варианте — том, что с темно-серыми точками. Что произойдет, если мы пойдем по первому пути и используем светло-серые точки? Тогда шарики третьего слоя окажутся точно над шариками первого. Продолжив точно так же и помещая каждый новый слой точно над позапрошлым слоем, мы получим второй вариант объемной решетки: гексагональную. Она отличается от гранецентрированной кубической решетки, но имеет ту же плотность. Интуитивно это понятно, поскольку два разных способа укладки третьего слоя симметричны относительно поворота, а сам слой в обоих случаях ложится на предыдущий одинаково плотно.
Это единственные два способа решетчатой упаковки, которые можно получить при укладке стопки треугольных слоев, но в 1883 г. географ и кристаллограф Уильям Барлоу заметил, что для каждого следующего слоя мы можем произвольно выбрать любой из двух вариантов укладки. Поскольку оба варианта вносят в плотность всей стопки одинаковый вклад, плотность всех этих вариантов упаковки будет одинакова и равна π/√18. При этом существуют бесконечно много случайных последовательностей такого рода и, соответственно, бесконечно много различных вариантов упаковки с одинаковой плотностью.
Короче говоря, нет единственной самой плотной объемной упаковки шариков. Их бесконечно много, и все они одинаково плотные. Отсутствие единственно верного решения — предупреждение: проблема не так проста и прямолинейна. Если Кеплер был прав, то существует оптимальная плотность упаковки, но есть и бесконечное множество различных структур, ею обладающих. И чтобы доказать оптимальность этой плотности, недостаточно успешно пристраивать каждый новый шарик к предыдущим как можно плотнее. Есть варианты.
Конечно, торговцы фруктами обладают невероятно богатым опытом — ведь гранецентрированную кубическую решетку наверняка можно было увидеть на рынках Древнего Египта еще в додинастическую эпоху, — но одним лишь опытом в таком деле никак не обойдешься. Вообще, тот факт, что метод торговцев фруктами дает хороший результат, в определенной мере случайность. Задача торговца фруктами состоит не в том, чтобы упаковать апельсины как можно плотнее в пространстве, где возможна, в принципе, любая конструкция. Его задача — уложить плоды как можно надежнее в мире, где земля плоская, а сила тяжести действует сверху вниз. Поэтому торговец начинает с того, что выкладывает апельсины в один слой — это очень естественно; затем он добавляет сверху еще один слой и т. д. Если ящик, в который укладываются плоды, прямоугольный, то первый слой, скорее всего, будет выложен по квадратной решетке. Если площадь ничем не ограничена, то естественной будет либо квадратная, либо треугольная решетка. В конечном итоге обе дают гранецентрированную кубическую решетку — по крайней мере, если треугольные слои укладываются как следует. Вообще говоря, квадратная решетка представляется не лучшим вариантом — ведь это не самый плотный способ укладки одного слоя. Однако — скорее по счастливой случайности, чем в результате осознанного выбора — это, как оказалось, не имеет значения.
Физики не интересуются апельсинами, их больше занимает то, как соседствуют друг с другом атомы. Кристалл — это регулярная, пространственно периодическая конструкция из атомов. Гипотеза Кеплера утверждает, что периодичность кристалла — это естественное следствие максимально плотной «упаковки» атомов. Для большинства физиков само существование кристаллов является достаточным доказательством, — по их мнению, гипотеза Кеплера очевидно верна. Однако мы только что убедились, что существует бесконечно много способов упаковки шариков с точно такой же плотностью, как у гранецентрированной кубической и гексагональной решеток, и что способы эти не являются пространственно периодическими. Так почему в кристаллах природа использует именно периодические структуры? Возможно, ответ в том, что атомы не следует рассматривать как сферические объекты.
Математики тоже не слишком интересуются апельсинами. Подобно Кеплеру, они предпочитают работать с идеальными и идентичными сферами, и доводы физиков не представляются им убедительными. Судите сами: если при моделировании кристаллов атомы не следует рассматривать как идеально круглые шарики, то существование кристаллов вообще не имеет отношения к гипотезе Кеплера и ничего не доказывает. Либо то, либо другое. Даже если вы скажете, что гипотеза как будто объясняет кристаллическую решетку, а кристаллическая решетка как будто показывает, что гипотеза верна… все равно в таком рассуждении будет логический пробел. Математикам нужно доказательство.
Кеплер не называл свое утверждение гипотезой: он просто высказал его в своей книге. Совершенно неясно, собирался ли он интерпретировать упомянутый факт столь всеобъемлющим образом. Имел ли он в виду, что гранецентрированная кубическая решетка представляет собой «самую плотную упаковку в трех измерениях» из всех представимых способов упаковки шариков? Или просто говорил о том, что это самая плотная упаковка из рассмотренных им лично? Невозможно вернуться в прошлое и спросить об этом. Но, как бы ни обстояло тогда дело, математиков и физиков интересует именно общая, самая смелая формулировка. Та, что требует рассмотреть все возможные способы упаковки бесконечного числа шариков в бесконечном пространстве и показать, что ни один из этих способов не может похвастать большей плотностью, чем гранецентрированная кубическая решетка.
Недооценить сложность гипотезы Кеплера очень легко. Вроде бы логично предположить, что самая плотная упаковка получится, если добавлять шарики по одному, так, чтобы каждый из них касался как можно большего числа соседних. Такой подход непременно даст структуру, о которой говорил Кеплер. То же получится, если вы будете добавлять шарики в правильном порядке и всегда, когда есть альтернативы, выбирать для них верную позицию. Однако нет никакой гарантии, что более дальновидная политика не окажется лучше, чем процесс поштучного добавления шариков. Всякий, кому приходилось укладывать вещи в багажник автомобиля, знает, что при укладке их по одной в багажнике могут остаться промежутки, куда ничего больше не лезет, но если начать сначала и подойти к вопросу более тщательно, то иногда удается втиснуть в то же пространство больше вещей. Конечно, отчасти проблема укладки вещей затрудняется тем, что все они имеют разные размеры и форму, но смысл аналогии достаточно понятен: максимально плотная упаковка на одном небольшом участке пространства может затруднить укладку остальных вещей и не привести к максимально плотной упаковке в большем объеме.
Конструкции, которые рассматривает Кеплер, очень специфичны. Можно предположить, что какой-то совершенно иной принцип позволит упаковать одинаковые шарики еще плотнее. Может быть, выпуклые слои были бы более эффективны. А может быть, «слои» — вообще неудачная идея. Но даже если вы абсолютно убеждены, что все сделано правильно, это все равно нужно доказывать.
Не убеждены? По-прежнему считаете, что здесь все очевидно? Настолько очевидно, что никакого доказательства не требуется? Сейчас я попытаюсь разрушить вашу уверенность в правильности интуитивного решения — на более простом примере, где речь идет об укладке одинаковых кружочков на плоскости. Предположим, я дам вам 49 одинаковых кружочков единичного диаметра. Каким будет размер самого маленького квадрата, способного их все вместить без перекрытия? На рис. 21 слева показан очевидный ответ: расположить их, как ставят молочные бутылки в ящике. Сторона квадрата при этом — ровно 7 единиц. Чтобы убедиться, что это наилучший вариант, обратите внимание на то, что каждый кружок жестко удерживается остальными, так что лишнее место взять неоткуда. Но рис. 21 справа показывает, что этот ответ неверен. Стоит упаковать кружочки вот таким немного нерегулярным образом, и они поместятся в квадрате со стороной чуть меньше 6,98. Так что доказательство тоже неверно. Жесткость упаковки не гарантирует, что невозможно сделать плотнее.