Одно из важнейших следствий — это величина погрешности в теореме о распределении простых чисел. Теорема, как вы помните, утверждает, что для большого x отношение π(x) к Li(x) приближается к 1, причем чем дальше, тем сильнее. Иными словами, разница между двумя функциями снижается до нуля относительно величины x{32}. Однако реальная разница при этом может расти (и растет). Просто она делает это медленнее, чем растет сам x. Компьютерные расчеты позволяют предположить, что величина погрешности примерно пропорциональна √xlogx. Если гипотеза Римана верна, это утверждение можно доказать. В 1901 г. Хельге фон Кох доказал, что гипотеза Римана логически эквивалентна оценке
для всех x ≥ 2657. Здесь вертикальными линиями обозначена абсолютная величина: разность, умноженная на ±1, чтобы сделать ее положительной. Эта формула дает наилучшие возможные ограничения для разницы между π(x) и Li(x).
Из гипотезы Римана можно получить немало других оценок для функций теории чисел. К примеру, из нее прямо следует, что сумма делителей n меньше
для всех n ≥ 5040, где γ — постоянная Эйлера (γ = 0,57721){33}. Эти утверждения могут показаться случайными и странными фактами, но хорошая оценка для важной функции жизненно важна во многих приложениях, и большинство специалистов по теории чисел отдали бы свою правую руку ради того, чтобы доказать любую из них.
Кроме того, гипотеза Римана говорит нам, насколько велико может быть расстояние между последовательными простыми числами. Типичный размер промежутка между ними можно вывести на основании теоремы о распределении простых чисел: в среднем промежуток между простым числом p и следующим простым числом сравним с log p. Некоторые промежутки могут быть меньше, некоторые больше, но математикам жилось бы легче, если бы можно было сказать наверняка, насколько велики могут быть самые большие из них. Харальд Крамер доказал в 1936 г., что если гипотеза Римана верна, то промежуток при простом числе p не может превышать величины √plog p, домноженной на некую константу.
Но подлинное значение гипотезы Римана куда глубже. Существуют далеко идущие обобщения и сильное подозрение, что тот, кто сумеет доказать гипотезу Римана, сможет, вероятно, доказать и связанную с ней обобщенную гипотезу Римана. А это, в свою очередь, даст математикам власть над обширными областями теории чисел.
Обобщенная гипотеза Римана вырастает из более подробного описания простых чисел. Все простые числа, кроме двойки, нечетные, и в главе 2 мы видели, что все нечетные простые можно разделить на два типа: те, что на 1 больше числа, кратного 4, и те, что на 3 больше числа, кратного 4. Говорят, что это числа вида 4k + 1 или 4k + 3, где k — число, на которое вы умножаете 4, чтобы получить данное простое число. Приведем короткий список первых нескольких простых чисел того и другого типа, вместе с соответствующими числами, кратными 4:
Прочерки указывают на то, что соответствующее число не простое.
Сколько существует простых чисел того и другого типа? Как они распределены среди всех простых чисел или среди всех целых чисел? Евклидово доказательство того факта, что простых чисел существует бесконечно много, можно без больших усилий модифицировать, доказав при этом, что существует бесконечно много простых чисел вида 4k + 3. Доказать, что простых чисел вида 4k + 1 тоже бесконечно много, гораздо сложнее, — это можно сделать, но лишь при помощи некоторых достаточно сложных теорем. Разница в подходах обусловлена тем, что любое число вида 4k + 3 имеет делитель того же вида, а в отношении чисел вида 4k + 1 это не всегда верно.
В числах этих двух видов нет ничего чудесного или священного. Все простые числа, кроме 2 и 3, имеют вид 6k + 1 или 6k + 5, и мы можем задать в отношении них аналогичные вопросы. Если уж на то пошло, все простые числа, кроме 5, имеют вид 5k + 1, 5k + 2, 5k + 3, 5k + 4. Мы оставляем в стороне числа вида 5k, поскольку они кратны 5 и, соответственно, все, кроме 5, не являются простыми.
Кстати говоря, на любой из подобных вопросов нетрудно выдвинуть разумное предположение — простые числа в арифметической последовательности. Случай с 5k достаточно типичен. Эксперимент быстро показывает, что числа приведенных выше четырех видов имеют примерно равные шансы оказаться простыми. Вот похожая таблица:
Так что должно существовать бесконечное количество простых чисел каждого вида, и в среднем к каждому виду должна относиться четверть всех простых чисел до заданного предела.
Для некоторых видов доказать, что простых чисел такого вида существует бесконечно много, совсем несложно. Для других видов требуются более изощренные рассуждения. Но до середины XIX в. никому не удавалось доказать, что существует бесконечно много простых чисел каждого возможного вида, не говоря уже о том, чтобы доказать их более или менее равномерное распределение. Лагранж в 1785 г. в работе, посвященной закону квадратичной взаимности — глубокому свойству квадратов простых модулей, — принимал этот факт без доказательства. Результаты дали очевидно полезные следствия, и пора было кому-нибудь это доказать. В 1837 г. Дирихле выяснил, как применить идеи Эйлера, связанные с теоремой о распределении простых чисел, для доказательства обоих этих утверждений. Первым делом следовало определить аналоги дзета-функции для этих типов простых чисел. То, что получилось, называется L-функциями Дирихле. К примеру, в случае 4k + 1/4k + 3 возникает следующая функция:
где коэффициенты равны +1 для чисел вида 4k + 1, −1 для чисел вида 4k + 3 и 0 для остальных. Греческую букву χ называют характером Дирихле, и это напоминает нам о том, какие именно знаки следует использовать.
Для римановой дзета-функции важен не только ряд, но и его аналитическое продолжение, придающее функции значения во всех комплексных точках. То же относится и к L-функции, и Дирихле определил подходящее аналитическое продолжение. Приспособив к случаю идеи, которые использовались для доказательства теоремы о распределении простых чисел, он сумел доказать аналогичную теорему о простых числах особых видов. К примеру, число простых чисел вида 5k + 1, меньших или равных x, асимптотически приближается к Li(x)/4; то же относится и к остальным трем случаям 5k + 2, 5k + 3, 5k + 4. Это означает, что простых чисел каждого вида бесконечно много.
Риманова дзета-функция — это особый случай L-функции Дирихле для простых чисел вида 1k + 0, т. е. для всех простых чисел. Обобщенная гипотеза Римана представляет собой очевидное обобщение оригинальной гипотезы: нули любой L-функции Дирихле либо имеют действительную часть, равную 1/2, либо являются тривиальными нулями, действительная часть которых отрицательна или больше единицы.
Если обобщенная гипотеза Римана верна, то верна и обычная его гипотеза. Многие следствия обобщенной гипотезы Римана аналогичны следствиям обычной. К примеру, схожие границы ошибки можно доказать для аналогичных версий теоремы о распределении простых чисел в применении к простым числам любого конкретного вида. Однако обобщенная гипотеза Римана подразумевает много такого, что совершенно отличается от всего, что мы можем вывести из обычной гипотезы Римана. Так, в 1917 г. Годфри Харди и Джон Литтлвуд доказали, что из обобщенной гипотезы Римана следует гипотеза Чебышева, в том смысле, что (буквально) простые числа вида 4k + 3 встречаются чаще, чем числа вида 4k + 1. Согласно теореме Дирихле, оба вида равновероятны в конечном итоге, но это не мешает простым числам вида 4k + 3 выигрывать у чисел 4k + 1, конечно, в правильной игре.
У обобщенной гипотезы Римана есть также важные следствия, имеющие отношение к проверке на простоту, такие как тест Миллера 1976 г., упомянутый в главе 2. Если обобщенная гипотеза Римана верна, то тест Миллера дает нам эффективный алгоритм проверки. Оценка эффективности более поздних тестов тоже зависит от обобщенной гипотезы Римана. Существуют и важные приложения для алгебраической теории чисел. Помните, в главе 7 говорилось, что новое определение идеальных чисел Куммера, данное Дедекиндом, привело к рождению новой фундаментальной концепции — понятия идеала. Разложение на простые множители в кольцах алгебраических целых чисел существует, но может не быть единственным. Разложение идеалов на простые множители работает много лучше: и существование, и единственность гарантированы. Так что имеет смысл заново рассмотреть все вопросы о множителях в терминах идеалов. В частности, существует понятие «простого идеала» — разумной и удобной аналогии простого числа.
Зная это, естественно спросить, есть ли у эйлеровой связи между обычными простыми числами и дзета-функцией аналог для простых идеалов. Если да, то весь мощный аппарат аналитической теории чисел применим к алгебраическим числам. Оказывается, это можно сделать, с глубокими и очень серьезными последствиями. Результат — дзета-функция Дедекинда — по одной такой функции на каждую систему алгебраических чисел. Существует глубокая связь между комплексными аналитическими свойствами дедекиндовой дзета-функции и арифметикой простых чисел в соответствующей системе алгебраических целых чисел. И, разумеется, существует аналог гипотезы Римана: все нетривиальные нули дедекиндовой дзета-функции лежат на критической линии. Понятие «обобщенная гипотеза Римана» теперь включает в себя и это утверждение.