i», в то время как решающий вывод будет буквально бросаться в глаза. Поэтому практикующие математики спрямляют путь и оставляют за бортом все рутинные или очевидные шаги. На пропуски обычно указывают фразы вроде «несложно показать, что…» или «из стандартных расчетов следует, что…» Зато ни один математик не пройдет — по крайней мере сознательно — мимо логической трудности и не попытается сделать вид, что ее нет. Более того, компетентный математик постарается обратить особое внимание на слабые с точки зрения логики звенья цепочки рассуждений и потратит бо́льшую часть времени и усилий на то, чтобы укрепить их и сделать достаточно надежными. Дело в том, что на практике доказательство — это математическая история с собственным сюжетом. У нее есть завязка, кульминация и развязка. В ней часто можно обнаружить боковые сюжетные ходы, которые вырастают из основного ствола, но ведут каждый к своему результату. Британский математик Кристофер Зиман однажды заметил, что любая теорема — это своего рода интеллектуальная точка покоя, где можно сделать остановку, перевести дыхание и ощутить некоторую определенность. Побочная сюжетная линия помогает свести концы с концами в основном сюжете. Доказательство напоминает литературный сюжет и в других отношениях: в них часто имеются один или несколько главных героев — конечно, это не люди, а идеи, — сложные взаимоотношения которых ведут к развязке и финалу.
Как явствует из формального определения, доказательство начинается с неких четких предположений, движется шаг за шагом от одного логического вывода к другому и заканчивается выводом о том, что вы, собственно, хотели доказать. Но доказательство — не просто список последовательных умозаключений, и логика в нем — не единственный критерий. Доказательство — это рассказ, который выслушивают и разбирают по косточкам люди, посвятившие большую часть жизни искусству прочтения таких историй и поиска в них ошибок и противоречий. Основная цель этих людей — доказать, что автор доказательства не прав. Эти люди обладают поразительной способностью замечать слабые места и без устали долбить в них, пока вся конструкция не рухнет, подняв облако пыли. Вообще, если какой-нибудь математик заявляет, что ему удалось решить крупную проблему (одну из великих, например, или что-нибудь попроще, но тоже достойное), остальные математики не спешат кричать «Ура!» и открывать шампанское. Профессиональный инстинкт велит им прежде всего постараться опровергнуть предложенное доказательство.
Так или иначе, доказательство — это единственный надежный инструмент, при помощи которого математики могут убедиться в собственной правоте. Предвидя реакцию математического сообщества, исследователи тратят огромные усилия на проверку собственных выводов и поиск противоречий в них. Так проще. Если же история успешно выдерживает критический анализ коллег, сообщество вскоре приходит к выводу, что она верна, и в этот момент создатель доказательства получает заслуженные похвалы и награды. Во всяком случае, обычно бывает именно так, хотя непосредственным участникам событий это может видеться иначе. Когда ты вовлечен во что-то, то воспринимаешь все не так, как сторонний наблюдатель.
Как математики решают задачи? Этот вопрос почти не изучался. Современные образовательные исследования на базе когнитивистики в основном ограничиваются изучением образования от начальной до высшей школы. Есть исследования, посвященные преподаванию математики в вузах, но их не так уж много. Кроме того, есть большая разница между освоением и преподаванием математики и новыми исследованиями в этой области. Многие из нас умеют играть на каком-нибудь музыкальном инструменте, но мало кто способен сочинить симфонический концерт или хотя бы написать популярную песенку.
Когда речь заходит о творчестве на высочайшем уровне, почти все, что мы знаем — или думаем, что знаем, — мы получаем путем самоанализа. Мы просим математиков объяснить ход их мыслей и пытаемся выделить в этих описаниях общие принципы. Одной из первых серьезных попыток понять, как думают математики, можно считать книгу Жака Адамара «Исследование психологии процесса изобретения в области математики»[1], вышедшую в 1945 г. Адамар расспросил ведущих математиков и физиков своего времени и попросил описать, как они думают в процессе работы над сложной задачей. И тут выявилась важная и даже необходимая роль того, что за неимением лучшего термина следует назвать интуицией. Их мысли направляло нечто подсознательное. Самые плодотворные их идеи и озарения не приходили постепенно, в результате логической пошаговой проработки, а возникали неожиданно, и весь процесс развивался скачкообразно.
Одно из самых подробных описаний этого на первый взгляд нелогичного подхода к логическим вопросам дал французский математик Анри Пуанкаре — один из ведущих ученых конца XIX — начала XX в. Пуанкаре отметился едва ли не во всех областях математической науки, внес радикальные изменения во многие из них и основал несколько новых ее разделов. В последующих главах мы не раз будем возвращаться к его работам. Кроме того, Пуанкаре писал научно-популярные книги, и, возможно, именно огромный опыт и широта кругозора помогли ему глубже понять процесс собственного мышления. Во всяком случае, он был твердо убежден, что осознанная логика — лишь часть творческого процесса. Да, бывают моменты, когда без нее не обойтись: к примеру, без логики невозможно понять, в чем именно состоит проблема, как невозможно и проверить полученный ответ. Но в промежутке, считал Пуанкаре, его мозг нередко работал над задачей самостоятельно, ничего не сообщая хозяину, причем работал так, что хозяин был просто не в состоянии постичь его методы.
Его описание творческого процесса различает три ключевых этапа: подготовка, вынашивание и озарение. Подготовка представляет собой сознательные логические усилия, направленные на то, чтобы увидеть проблему, точно сформулировать ее и попробовать решить традиционными методами. Этот этап, когда подсознание получает задание и материал для работы, Пуанкаре считал очень важным. Вынашивание происходит, когда вы прекращаете думать о задаче, отвлекаетесь от нее и занимаетесь чем-то другим. А подсознание тем временем начинает перебирать и комбинировать идеи, часто довольно дикие, и продолжается это до тех пор, пока вдали не забрезжит свет. Если повезет, результатом станет озарение: подсознание даст вам сигнал, и в вашем мозгу как будто вспыхнет лампочка — возникнет готовый ответ.
Такое творчество подобно хождению по натянутому канату. С одной стороны, вы не можете решить сложную проблему, пока не познакомитесь как следует с областью, к которой она относится, а также с множеством других тем, которые могут пригодиться, а могут и не пригодиться в работе, просто на всякий случай. С другой стороны, если, изучая все нужные области математики, вы обратитесь к стандартному, уже много раз безрезультатно опробованному пути, то, возможно, уже не сумеете выбраться из наезженной колеи и ничего нового не откроете. Фокус в том, чтобы много знать и сознательно собирать свои знания воедино, работать над этим неделю за неделей… а затем отложить проблему в сторону. Тогда за дело возьмется интуитивная часть вашего сознания: она отсмотрит все идеи, повертит их так и эдак, оценит, где «холодно», а где «горячо», и сообщит вам, если что-нибудь найдет. Произойти это может в любой момент: Пуанкаре однажды понял, как нужно решать задачу, мучившую его несколько месяцев, выходя из автобуса. Шриниваса Рамануджан, индийский математик-самоучка, создававший замечательные формулы, часто видел новые идеи во сне. А Архимед, согласно легенде, нашел способ определить содержание золота в сплаве, принимая ванну.
Пуанкаре особо указал, что без первоначального периода подготовки успеха не достичь. Подсознанию, настаивал он, необходимо дать как можно больше пищи для размышления, в противном случае удачные идеи, которые в конечном итоге могут привести к решению, просто не возникнут. Вдохновения без трудового пота не бывает. Кроме того, Пуанкаре наверняка знал — ведь об этом знает любой математик-исследователь, — что одного такого трехэтапного процесса редко бывает достаточно. Решение серьезной задачи, как правило, требует нескольких озарений. Этап вынашивания одной идеи может быть прерван вспомогательным процессом подготовки, вынашивания и озарения какой-то другой задачи, решение которой оказалось необходимым для работы над первой, основной идеей. Решение любой стоящей задачи, великой или не слишком, обычно включает в себя множество таких последовательностей, заключенных одна в другой, как замысловатые фракталы Бенуа Мандельброта. Вы решаете задачу, разбивая ее на подзадачи. Вы убеждаете себя, что если удастся решить эти подзадачи, то затем из полученных результатов можно будет собрать решение задачи в целом. Иногда они решаются, иногда приходится возвращаться к началу пути. Иногда подзадача сама рассыпается на несколько кусочков. Даже уследить за происходящим и удержать в голове общую картину порой очень и очень непросто.
Я назвал работу подсознания «интуицией». «Интуиция» — одно из удобных, но вводящих в заблуждение слов, таких как «инстинкт», которые широко используются, хотя и не имеют четкого значения. Подобными словами называют нечто непонятное, присутствие чего тем не менее отрицать невозможно. Математическая интуиция — это способность разума чувствовать форму и структуру и распознавать закономерности, которые мы не в состоянии уловить на сознательном уровне. Интуиция не обладает кристальной чистотой осознанной логики, зато способна привлечь наше внимание к вещам, которые мы никогда не стали бы рассматривать сознательно. Нейробиологи еще только начинают понимать, как человеческий мозг справляется с гораздо более простыми задачами. Понятно, однако, что интуиция, как бы она ни работала, существует благодаря структуре мозга и его взаимодействию с внешним миром.
Зачастую главное, чем помогает в работе интуиция, — она подсказывает, где у задачи слабые места, где к ней можно подступиться с максимальными шансами на успех. Математическое доказательство подобно сражению или, если вы предпочитаете менее воинственные сравнения, шахматной партии. Как только потенциально слабое место выявлено, исследователь бросает в бой (т. е. на его изучение) все свои возможности исследователя, весь математический аппарат, которым владеет. Как Архимед нуждался в точке опоры, чтобы перевернуть Землю, так и математик-исследователь нуждается в рычагах воздействия на задачу. Одна-единственная ключевая идея может раскрыть ее, сделать доступной для стандартных методов. Ну а после этого довести решение задачи до конца — дело техники.