Величайшие математические задачи — страница 53 из 71

Кое-какие положительные результаты для трехмерного уравнения Навье — Стокса уже имеются. Если в начальном состоянии поток характеризуется достаточно маленькими скоростями, т. е. течет вяло и очень медленно, то и первое, и второе утверждения верны. Эти утверждения верны даже при больших скоростях — на протяжении некоторого ненулевого промежутка времени. Неизвестно, существует ли решение, верное для любого момента в будущем, но есть некоторый промежуток времени, на котором решение существует точно. Может показаться, что эту логику рассуждений можно повторять без конца, продвигая решение вперед во времени на небольшие промежутки и используя всякий раз конечный результат как новое начальное состояние. Проблема с подобным подходом заключается в том, что временны́е интервалы при этом могут уменьшаться настолько стремительно, что бесконечное число шагов будет укладываться в конечное время. К примеру, если каждый последовательный шаг продвигает решение на половину времени, достигнутого на предыдущем шаге, то весь процесс закончится за время  что равняется 2. Если решение прекращает существовать — в настоящее время это чисто гипотетическое предположение, но рассматривать его мы все же можем, то говорят, что решение, о котором идет речь, разрушается. Время, за которое это происходит, называется временем разрушения решения.

Так что в четырех задачах, по существу, спрашивается о том, могут ли решения разрушаться. Если не могут, верны утверждения 1 и 2; если могут — утверждения 3 и 4. Возможно, решения могут разрушаться в бесконечном пространстве, а на конечном плоском торе — не могут. Кстати говоря, если ответ на вопрос 1 положителен, то положителен ответ и на вопрос 2, потому что поток любой структуры на плоском торе можно интерпретировать как пространственно периодический поток в целом бесконечном пространстве. Речь идет о том, чтобы наполнить пространство копиями прямоугольника, о котором идет речь, и в каждом воспроизвести поток в точности той же структуры. Правила склеивания для тора гарантируют, что поток, пересекая эти плоские стыки, остается гладким. Аналогично если верно утверждение 4, то верно и утверждение 3 по той же причине. Мы просто делаем начальное пространство пространственно периодическим. Но, насколько мы сейчас в состоянии сказать, ответ на вопрос 2 может оказаться положительным даже при отрицательном ответе на вопрос 1.

Нам известен, однако, один поразительный факт, касающийся разрушения решений. Если существует решение с конечным временем разрушения, то максимальная скорость жидкости во всех точках пространства должна стать произвольно большой. Это могло бы произойти, к примеру, если бы сформировалась струя и скорость ее росла столь стремительно, что уже через конечный промежуток времени она улетела бы в бесконечность.


Это не чисто гипотетические возражения. Примеры подобного сингулярного поведения наблюдаются в некоторых других уравнениях классической математической физики. Замечательный пример можно найти в небесной механике. В 1988 г. Ся Чжихун доказал, что существует такая начальная конфигурация пяти материальных точек, или точечных масс, в трехмерном пространстве, где действует закон тяготения Ньютона, в которой четыре тела через конечный промежуток времени исчезают в бесконечности — тоже своего рода разрушение, а пятое переживает еще более значительные колебания. Ранее Джозеф Гервер указал, что пять тел на плоскости могут все раствориться в бесконечности за конечное время, но не смог завершить доказательство такого сценария. В 1989 г. он доказал, что разбегание такого рода определенно возможно на плоскости, если число тел достаточно велико.

Замечательно, что такое поведение возможно, ведь в подобных системах действует закон сохранения энергии. Конечно, если все тела движутся произвольно быстро, то полная кинетическая энергия системы должна расти? Ответ в том, что одновременно падает потенциальная энергия, а полная гравитационная потенциальная энергия материальной точки бесконечна. Должен сохраняться еще и момент импульса, но и это возможно, если некоторые из тел движутся все быстрее и быстрее по кругу все уменьшающегося диаметра.

Речь здесь идет о таком физическом явлении, как знаменитый эффект пращи, или гравитационный маневр, часто используемый при отправке исследовательских станций к далеким планетам Солнечной системы. Хороший пример — американский зонд «Галилео», в задачу которого входило долететь до Юпитера и исследовать эту гигантскую планету и ее многочисленные спутники. Зонд был запущен в 1989 г. и достиг цели в 1995 г. Путешествие длилось так долго, в частности, потому, что маршрут его был, мягко говоря, непрямым. Несмотря на то что орбита Юпитера находится дальше от Солнца, чем орбита Земли, «Галилео» в начале своего полета направился внутрь, к Венере. Он прошел вблизи Венеры, вернулся, чтобы пролететь мимо Земли, и отправился дальше в космос «взглянуть» на астероид Гаспра. Затем он вновь сблизился с Землей, еще раз обогнул нашу планету и наконец двинулся к Юпитеру. По пути он сблизился еще с одним астероидом, Идой, и обнаружил у него собственную крошечную луну — новый астероид, получивший название Дактиль.

Почему была выбрана такая извилистая траектория? От каждой встречи с планетой «Галилео» получал энергию и, следовательно, увеличивал скорость. Представьте себе, что космический зонд направляется к планете — не курсом столкновения, но так, чтобы пройти достаточно близко к поверхности и быстро развернуться за ней. После этого его должно вновь выбросить в дальний космос. Когда зонд проходит за планетой, они притягиваются друг к другу. Более того, они все время притягивались друг к другу, но на этой стадии полета сила притяжения становится максимальной и потому производит максимальное действие. Тяготение планеты как бы подталкивает зонд и придает ему дополнительную скорость. Суммарная энергия должна сохраняться, поэтому взамен зонд чуть замедляет движение планеты по орбите вокруг Солнца. Поскольку масса зонда очень мала, а масса планеты, напротив, очень велика, действием зонда на планету можно пренебречь. Действием планеты на зонд пренебречь нельзя: он может ускориться очень заметно.

«Галилео» прошел над поверхностью Венеры на высоте 16 000 км и получил прибавку скорости в 2,23 км/с. После этого он прошел в 960 км от Земли, а затем еще раз в 300 км, во второй раз добавив к своей скорости еще 3,7 км/с. Без этих маневров он не добрался бы до Юпитера, поскольку запускавшая его ракета не смогла бы направить его непосредственно туда. Первоначальный план, кстати говоря, предусматривал именно это: зонд предполагалось запустить на шаттле с кислородно-водородным разгонным блоком Centaur-G. Но катастрофа «Челленджера», когда космический челнок взорвался вскоре после старта, заставила отказаться от этого плана. Использование блока Centaur-G было запрещено. Пришлось воспользоваться для запуска «Галилео» менее мощным твердотопливным блоком IUS. Миссия была весьма успешна, среди ее научных результатов — наблюдение столкновения кометы Шумейкера — Леви с Юпитером, которое произошло в 1994 г., когда зонд был еще на пути к газовому гиганту.

Сценарий Ся учитывает и эффект пращи. Четыре планеты равной массы образуют две тесные пары, которые обращаются вокруг общих центров масс в двух параллельных плоскостях. Эти «ракетки», состоящие каждая из двух тел, играют в звездный теннис пятым, более легким телом, которое носится туда-сюда между ними по траектории, перпендикулярной плоскостям. Система устроена так, что всякий раз, когда этот «теннисный мячик» проходит мимо пары планет, эффект пращи ускоряет его и одновременно отталкивает пару планет прочь вдоль линии, соединяющей обе пары. Таким образом, «теннисный корт» с каждым ударом немного удлиняется, а игроки расходятся дальше. Энергия и импульс сохраняются в равновесии, поскольку две планеты, нанося «удар», придвигаются чуть ближе друг к другу и чуть ускоряют движение вокруг центра масс. При правильных начальных условиях пары планет расходятся все быстрее, и скорость их расхождения растет так стремительно, что они улетают в бесконечность за конечное время. При этом и «теннисный мяч» колеблется между ними все быстрее и быстрее. В сценариях разбегания Гервера тоже используется эффект пращи.

Но приложим ли этот фокус с исчезновением к реальным небесным телам? Нет, если подходить к вопросу буквально. В этих сценариях важно, чтобы тела были материальными точками. Для многих задач из небесной механики это достаточно разумное приближение, но не тогда, когда тела должны проходить на произвольно малых расстояниях друг от друга. Если бы тела конечных размеров действительно так делали, то рано или поздно они непременно столкнулись бы. Кроме того, релятивистские эффекты не позволили бы телам двигаться быстрее света и изменили бы закон гравитации. Во всяком случае начальные условия и дополнительное условие равенства некоторых масс в реальности, вероятно, никогда бы не выполнились. Тем не менее эти любопытные примеры показывают, что, хотя уравнения небесной механики, как правило, очень хорошо моделируют реальность, они могут иметь сложные сингулярности, которые не позволят решениям существовать в каждый момент времени. Не так давно ученые поняли, что в системе тройной звезды, где звезды движутся по сложным траекториям, эффект пращи может в какой-то момент выбросить одну из звезд наружу с большой скоростью. Так что вполне может оказаться, что галактику (а может, и межгалактическое пространство) бороздит несметное количество звезд-сирот — холодных, одиноких, нежеланных и невидимых, изгнанных братьями из своих систем.


Когда дифференциальное уравнение ведет себя так странно, что его решения через конечный промежуток времени лишаются всякого смысла, мы говорим, что возникает сингулярность. Описанная выше работа по задаче множества тел на самом деле посвящена различным типам сингулярности. В задаче тысячелетия, связанной с уравнением Навье — Стокса, спрашивается, могут ли сингулярности возникать в задачах с начальными условиями для жидкости, занимающей либо все пространство, либо плоский тор. Если сингулярность может сформироваться за конечное время, результатом, скорее всего, станет разрушение решения, разве что сингулярность разрешится позже сама собой, что представляется маловероятным.