a яблок, то всего получится 5a, сколько бы в реальности ни было яблок. Сам символ, как и то, что он представляет, вовсе не имеет значения: если бы вместо 3a яблок у вас было 3b апельсинов, к которым вы прибавляли бы 2b апельсинов, то результат был бы 5b{42}. Но что произойдет, если у вас будет 3a яблок и 2b апельсинов? Что будет, если сложить 3a и 2b?
Вот и все. Эту сумму невозможно упростить и превратить в 5 чего-нибудь: по крайней мере нельзя без некоторых манипуляций с новой категорией — фруктами — и каких-то новых уравнений. Это лучшее, что можно получить: удовлетворитесь этим. Однако, начав с этого, вы вскоре сможете производить такие действия, как:
без всяких дополнительных рассуждений. И без новых видов фруктов.
Есть, правда, кое-какие оговорки. Я уже отметил, что при складывании яблока и яблока два яблока получится только в том случае, если первое яблоко не идентично второму. То же можно сказать и о более сложных комбинациях яблок и апельсинов. В алгебре считается, что для целей сложения все яблоки, о которых идет речь, различны между собой. Вообще-то принять такое условие часто имеет смысл даже в тех случаях, когда два яблока — или что мы там складываем — на самом деле могут оказаться идентичными. Одно яблоко плюс еще раз то же самое яблоко будет яблоко с кратностью два.
Привыкнув к этой идее, вы сможете пользоваться ею везде. Одна свинья плюс та же свинья получается свинья с кратностью два: свинья + свинья = 2 свиньи, что бы ни скрывалось на самом деле под словом «свинья». Свинья плюс корова будет свинья + корова. Треугольник плюс три круга будет треугольник + три круга. Суперпуперсфера плюс три гиперэллиптических квазикучи будет
что бы все эти специальные термины ни означали (в данном случае ничего).
Можно даже разрешить отрицательные числа и говорить о вычитании 11 коров из трех свиней: 3 свиньи — 11 коров. Я понятия не имею, что представляют собой минус 11 коров, но я могу быть уверен, что если я прибавлю к ним шесть коров, то получу минус пять коров{43}. Это формальная игра с символами, и никакая реалистичная интерпретация здесь не требуется, не нужна или — зачастую — невозможна. Можно разрешить действительные числа: π свиней минус √2 коров. Комплексные числа. Любые сколь угодно причудливые числа, которые взбредут в голову математику. Этой идее можно придать чуть больше лоска и респектабельности, если рассматривать числа как бирки, навешенные свиньям и коровам. Тогда π свиней минус √2 коров можно рассматривать как свинью с биркой π рядом с коровой с биркой — √2. Арифметика здесь применяется к биркам, а не к животным.
В гипотезе Ходжа тоже фигурирует подобная конструкция с дополнительными рюшечками и украшениями. Вместо животных в ней используются кривые, поверхности и их многомерные аналоги. Может показаться странным, но в результате получается не просто абстрактная чепуха, а глубокая связь между топологией, алгеброй, геометрией и анализом.
Чтобы привести в порядок математический аппарат гомологии, нам потребуется складывать петли, но не так, как мы делали это в фундаментальной группе, а так, как учила меня в свое время учительница. Мы будем просто записывать петли и ставить знак «+» между ними. Чтобы это имело смысл, мы будем работать не с отдельными петлями, а с конечными их наборами. Мы обозначим каждую петлю целым числом, которое будет соответствовать частоте встречаемости этой петли, и назовем такой набор циклом. Теперь наш муравей получает возможность складывать циклы. Для этого он должен объединить петли и сложить значения соответствующих маркеров. Результатом будет новый цикл. Возможно, рассказывая в главе 10 о путешествиях муравья, мне следовало взять мотоциклы, а не автобусы.
Когда мы занимались строительством фундаментальной группы, где «сложение» означает соединение петель концом к концу, там была одна техническая проблема. Добавление тривиальной петли к любой другой давало в результате не совсем ту же самую петлю, так что нулевая петля вела себя неправильно. Сложение прямой и обратной петель давало не совсем нулевую петлю, так что инверсия тоже работала некорректно. Чтобы решить эту проблему, решено было считать петли одинаковыми, если одну из них можно плавно преобразовать во вторую.
Для гомологии это вообще не проблема. Существует нулевой цикл (все маркеры нулевые), и для каждого цикла существует обратный к нему цикл (чтобы получить его, достаточно поменять знак у маркера цикла), поэтому мы имеем группу. Проблема в том, что это не та группа. Она ничего не говорит нам о топологии пространства. Чтобы разобраться в этом, мы воспользуемся аналогичной уловкой и более свободным подходом к тому, что считать нулем. Муравей режет пространство на треугольные заплатки, и граница каждой заплатки топологически достаточно тривиальна: ее можно свести в точку, просто сужая со всех сторон к середине. Таким образом, все граничные циклы должны быть эквивалентны нулевому циклу. Этот логический ход немного напоминает переход от обычных чисел к значениям по модулю (скажем, по модулю 12); мы делаем вид, что число 12 не имеет значения, и его можно назвать нулем. Здесь мы переводим циклы в плоскость гомологии, делая вид, что любые граничные циклы значения не имеют.
Следствия такой позиции очень серьезны. Теперь на алгебру циклов влияет топология пространства. Группа циклов по модулю границ является полезным топологическим инвариантом — гомологической группой поверхности. На первый взгляд этот инвариант зависит от того, какой вариант триангуляции выберет муравей, но если говорить об эйлеровой характеристике, то различные варианты триангуляции одной и той же поверхности приводят к одной и той же гомологической группе. Таким образом, муравей придумал алгебраический инвариант, при помощи которого можно различать поверхности. Искать его — довольно трудоемкое занятие, но хорошие инварианты невозможно получить без труда. Данный инвариант настолько эффективен, что с его помощью можно отличить не только сферу от тора, но тор с двумя отверстиями от тора с пятью отверстиями или с любым другим их количеством.
Гомология может показаться слишком сложной, но именно она положила начало целой серии топологических инвариантов. Кроме того, она основана на простых геометрических идеях: петлях, границах, объединении наборов, арифметических действиях с маркерами. Учитывая, что бедный муравей заперт на своей поверхности, просто поразительно, что он может узнать кое-что о своей вселенной при помощи разделения поверхности на треугольные кусочки, составления карты и некоторых алгебраических операций.
Можно естественным образом распространить гомологию на высшие измерения. Трехмерный аналог треугольника — тетраэдр; у него четыре вершины, шесть ребер, четыре треугольные грани и одна трехмерная «грань», его внутренность. В более общем случае в n измерениях можно определить n-мерный тетраэдр, или симплекс, с n + 1 вершинами, попарно соединенными всеми возможными ребрами. Они, в свою очередь, образуют треугольники, которые собираются в тетраэдры и т. д. Теперь несложно определить циклы, границы и гомологию и опять же можно состряпать группу путем добавления (гомологических классов) циклов. Фактически мы получаем целую серию групп: одну для нульмерных циклов (точек), одну для одномерных циклов (отрезков), одну для двумерных циклов (треугольников) и т. д. до полной размерности пространства. Это нулевая, первая, вторая и т. д. гомологические группы пространства. Грубо говоря, они уточняют представление об отверстиях различных размерностей в пространстве: существуют ли они, сколько их и как они соотносятся друг с другом?
Это и есть гомология, и этого нам почти достаточно для понимания того, что говорит гипотеза Ходжа. Однако что нам на самом деле нужно, так это близкая к ней концепция когомологии. В 1893 г. Пуанкаре обратил внимание на любопытное совпадение в гомологии любого многообразия: список гомологических групп с начала и с конца читается одинаково. Для многообразия размерности 5, скажем, нулевая гомологическая группа совпадает с пятой, первая — с четвертой, а вторая — с третьей. Он понял, что это не может быть простым совпадением, и объяснил его двойственностью триангуляции, с которой мы уже встречались в главе 4 в связи с картами. Это второй вариант триангуляции, где каждый треугольник заменяется вершиной, каждая сторона, общая для двух треугольников, — ребром, соединяющим две вершины, а каждая точка — треугольником, как на рис. 9 в главе 4. Обратите внимание на то, что измерения появляются здесь в обратном порядке: двумерные треугольники превращаются в нульмерные точки, и наоборот; одномерные ребра остаются одномерными, потому что 1 находится в середине.
Оказывается, полезно различать два списка, хотя инварианты они выдают одни и те же. Когда все это обобщается и облекается в формальные термины, триангуляция исчезает, и дуальная триангуляция тоже теряет смысл. Остаются только две серии топологических инвариантов, именуемых гомологическими и когомологическими группами. Вообще, каждое понятие в гомологии имеет двойника, название которого обычно образуется от названия понятия путем добавления приставки «ко-». Таким образом, вместо циклов мы получаем коциклы, а вместо заявления о том, что два цикла гомологичны, говорим, что два коцикла когомологичны. Классы, о которых идет речь в гипотезе Ходжа, — это классы когомологий, которые представляют собой наборы когомологичных коциклов.