Величайшие математические задачи — страница 68 из 71

p/q для целых p и q, то q равняется по крайней мере 10242 080.

Постоянная Эйлера важна во многих областях математики — от римановой дзета-функции до квантовой теории поля. Она появляется во многих ситуациях и в многочисленных формулах. Поэтому просто возмутительно, что мы не можем решить, рациональна ли она!

Действительные квадратичные числовые поля

В главе 7 мы видели, что одни алгебраические числовые поля имеют единственное разложение на простые множители, а другие — нет. Лучше всего изучены квадратичные алгебраические числовые поля, полученные путем извлечения квадратного корня из некоего числа d, которое не является полным квадратом, более того, не имеет делителей — полных квадратов. Соответствующее кольцо алгебраических целых чисел, состоящее из всех чисел вида a+bd, где a и b — целые числа, если d не имеет вид 4k + 1, и либо целые, либо нечетные целые, деленные на 2, если d имеет такой вид.

Если d отрицательно, то мы знаем, что разложение на простые множители является единственным ровно для девяти чисел: −1, −2, −3, −7, −11, −19, −43, −67 и −163. Доказательство единственности в этих случаях относительно понятно, но вот поиск других таких чисел очень сложен. В 1934 г. Ганс Хайльбронн и Эдвард Линфут показали, что к этому списку можно добавить не более одного отрицательного целого числа. Курт Хегнер в 1952 г. предложил доказательство полноты списка, но считалось, что в этом доказательстве есть пробел. В 1967 г. Гарольд Старк нашел полное доказательство, заметив при этом, что оно незначительно отличается от доказательства Хегнера, т. е. что пробел не имел значения. Примерно в то же время Алан Бейкер нашел еще одно доказательство.

Случай, когда d положительно, совсем не такой. Разложение на простые множители единственно для гораздо большего числа значений d. Только до 50 это 2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 21, 22, 23, 29, 31, 33, 37, 38, 41, 43, 46, 47. Компьютерные расчеты позволяют получить еще много значений. Насколько нам известно, может существовать бесконечно много положительных значений d, соответствующее которым квадратичное числовое поле однозначно раскладывается на простые множители. Эвристический анализ, проведенный Коэном и Ленстрой, позволяет предположить, что примерно три четверти всех положительных d, по идее, должны определять числовые поля с однозначными разложениями. Проблема в том, чтобы доказать, что эти наблюдения верны.

Муравей Лэнгтона

Годы идут, и становится все более очевидным, что традиционные методы математического моделирования уже не справляются с задачами, которые ставит перед собой человечество: моделированием глобальной финансовой системы, динамики экосистем, роли генов в росте и развитии живых организмов. Во многие из этих систем входит гигантское количество действующих «лиц» — людей, компаний, организмов, генов, взаимодействующих между собой. Нередко эти взаимодействия можно смоделировать при помощи достаточно простых правил. В последние 30 лет получил развитие новый тип модели, который пытается разобраться с поведением подобных систем, что называется, «в лоб». К примеру, чтобы понять, как 100 000 человек будут вести себя на стадионе, мы не станем усреднять их и превращать в своего рода человеческую жидкость, течение которой затем следует рассматривать. Нет, мы строим компьютерную модель из 100 000 отдельных модулей, накладываем на них подходящие ограничения, устанавливаем правила и запускаем процесс моделирования, чтобы посмотреть, что будет делать эта компьютерная толпа. Такого рода модели в математике называют сложными системами.

Чтобы дать вам некоторое представление об этой новой и очень интересной области математики, я опишу одну из простейших сложных систем и объясню, почему мы не понимаем ее до конца. Эта система называется муравьем Лэнгтона. Кристофер Лэнгтон был одним из первых сотрудников Института Санта-Фе, который основали в 1984 г. физики Джордж Коуэн, Марри Гелл-Ман и другие для развития теории и приложений сложных систем. Лэнгтон придумал своего муравья в 1986 г. Технически это клеточный автомат, система клеток квадратной решетки, состояния которых обозначаются цветом. На каждом временно́м шаге цвет каждой клетки изменяется в соответствии с цветом соседних с ней клеток.

Правила просты до нелепости. Муравей живет на бесконечной квадратной решетке из клеток, и первоначально все они белые. Он всегда носит с собой неиссякаемый горшочек с черной краской и такой же горшочек с белой краской. Он может идти на север, на восток, на юг или на запад. Из соображений симметрии скажем, что первый шаг он делает на север. В каждый момент времени муравей смотрит на цвет клетки, в которой оказался, и перекрашивает ее из черной в белую или из белой в черную. Если клетка была белой, то после перекрашивания муравей поворачивает на 90° направо и делает один шаг вперед. Если клетка была черной, то он поворачивает на 90° налево и делает то же самое. И так до бесконечности. Если вы смоделируете поведение муравья, то сначала он будет рисовать простой симметричный узор из белых и черных квадратов. Время от времени он возвращается на клетку, где уже был, но петля при этом не замыкается, потому что цвет клетки изменился, и муравей повернет в другую сторону. Моделирование продолжается, и рисунок становится хаотичным и случайным. При этом в нем невозможно различить никаких закономерностей: в основе своей это просто беспорядок. На этой стадии можно подумать (и вполне здраво), что такое хаотичное поведение будет продолжаться бесконечно. В конце концов, вернувшись в хаотично раскрашенный регион, муравей непременно сделает серию хаотичных шагов. Если вы будете продолжать моделирование, то следующие примерно 10 000 шагов подтвердят ваше предположение. Однако затем, если вы будете настойчивы, проявится закономерность. В движениях муравья возникнет повторяющийся цикл из 104 шагов, в результате которого он проходит две клетки по диагонали. После этого он будет двигаться, прорисовывая широкую диагональную полосу из черных и белых клеток, которую иногда называют магистралью, и так до бесконечности (см. рис. 49).



Все описанное до сих пор может быть доказано по всей строгости просто последовательным перебором муравьиных шагов. Это будет достаточно длинное доказательство — список из 10 000 шагов, — но все же доказательство. Но математика системы станет более интересной, если мы зададимся чуть более общим вопросом. Что если еще до начала движения муравья мы перекрасим некоторое конечное число клеток решетки в черный цвет? Мы можем выбрать для этого любые клетки: это может быть случайный набор, черный квадрат или Мона Лиза. Их может быть миллион, или миллиард, или еще больше, но не бесконечное количество. Что произойдет?

Обычное движение муравья резко меняется при встрече с любой из новых черных клеток. Он может долго бродить окрест, рисуя сложные орнаменты и раз за разом перерисовывая их заново… Но во всех до сих пор предпринятых попытках, какой бы ни была первоначальная конфигурация, в конце концов муравей непременно принимался за строительство магистрали при помощи все того же 104-шагового цикла. Всегда ли это происходит? Является ли магистраль единственным «аттрактором» движения муравья? Никто не знает. Это одна из фундаментальных нерешенных задач теории сложности. Максимум, что нам известно, — это то, что, какой бы ни была первоначальная конфигурация черных клеток, муравей не останется навечно в пределах ограниченной области поля.


Гипотеза Адамара

Матрица Адамара, названная в честь Жака Адамара, представляет собой квадратную матрицу из нулей и единиц, такую, что в любых двух ее рядах или столбцах половина элементов совпадает, а другая половина — отличается. На рис. 50 можно увидеть матрицы размеров 2, 4, 8, 12, 16, 20, 24 и 28, где 0 и 1 обозначены черным и белым цветом. Такие матрицы появляются во многих математических задачах и в компьютерных науках, в первую очередь в теории кодирования. (В некоторых приложениях, в том числе в задаче, которой первоначально занимался Адамар, белые квадраты соответствуют −1, а не 0.)

Адамар доказал, что подобные матрицы могут существовать только при n = 2 или n, кратном 4. Теорема Пейли 1933 г. доказывает, что матрица Адамара существует всегда для n, кратного 4 и равного 2a(pb + 1), где p — нечетное простое число. Из чисел, кратных 4, под эту теорему не подпадают 92, 116, 156, 172, 184, 188, 232, 236, 260, 268 и другие, более крупные значения n. Гипотеза утверждает, что матрица Адамара существует любых размеров, кратных 4. В 1985 г. К. Савад нашел матрицу размера 268. Есть и другие числа, не удовлетворяющие условию теоремы Пейли, с которыми уже разобрались. В 2004 г. Хади Харагани и Бехруз Тайфех-Резайе нашли матрицу Адамара размера 428, и теперь минимальное значение n, для которого она неизвестна, составляет 668.

Уравнение Ферма — Каталана

Это диофантово уравнение xa +yb = zc, где a, b и c — положительные целые числа, показатели степени. Я назову это уравнение уравнением Ферма — Каталана, потому что его решения имеют отношение как к Великой теореме Ферма (см. главу 7), так и к гипотезе Каталана (см. главу 6). Если a, b и c малы, ненулевые целые решения не особенно удивительны. К примеру, если все они равны 2, мы имеем уравнение Пифагора, которое, как известно со времен Евклида, имеет бесконечно много решений. Так что основной интерес представляют те случаи, когда показатели степени велики. Формально они являются «большими», когда s = 1/a + 1/b + 1/c меньше 1. Известно лишь десять больших решений уравнения Ферма — Каталана:

1 + 2³ = 3²,