x² вычисляются квадраты чисел. (Простые формулы существуют, но они «мошенничают», встраивая в формулу сами простые числа под разными личинами, и в результате не сообщают нам ничего нового{3}.) Пытаясь познать природу этих неуловимых и странных чисел, мы экспериментируем, ищем в них признаки структурированности и пытаемся доказать, что найденные нами закономерности присутствуют во всех простых числах, какими бы большими они ни были. Можно, к примеру, задаться вопросом о том, как простые числа распределены среди всех целых чисел. Таблицы простых чисел позволяют предположить, что чем дальше, тем таких чисел становится меньше. В табл. 1 показано, сколько простых чисел содержится в разных диапазонах на 1000 последовательных целых чисел.
Таблица 1. Количество простых чисел в последовательных интервалах по 1000 чисел
Числа во второй колонке по большей части уменьшаются сверху вниз, хотя иногда ненадолго изменяют свое поведение: к примеру, после 114 мы видим 117. Это симптом нерегулярности простых чисел, но в целом общая тенденция прослеживается достаточно четко: чем больше числа, тем реже среди них встречаются простые. За объяснением не нужно далеко ходить: чем больше становится число, тем больше у него потенциальных делителей. А простые числа должны избегать каких бы то ни было делителей. Это напоминает ловлю составных (непростых) чисел рыболовной сетью: чем гуще становится сеть, тем меньшему числу простых чисел удается сквозь нее проскользнуть.
У этой «сети» есть даже название: решето Эратосфена. Эратосфен Киренский — древнегреческий математик, живший около 276–194 гг. до н. э. Он также был атлетом, интересовался поэзией, географией, астрономией и музыкой. Эратосфен первым сумел разумным образом оценить размеры Земли, обратив внимание на положение солнца в полдень в двух разных местах — Александрии и Сиене (современный Асуан). В Сиене солнце в полдень стояло точно над головой, а в Александрии отстояло от вертикали примерно на 7°. Поскольку угол в 7° составляет одну пятидесятую часть круга, то и окружность Земли должна в 50 раз превосходить расстояние от Александрии до Сиены. Эратосфен не мог непосредственно измерить это расстояние, поэтому он спросил у караванщиков, сколько времени занимает путешествие на верблюдах из одного города в другой, и оценил, сколько в среднем проходят верблюды за день. Результат своих расчетов он привел в тогдашних единицах расстояния — стадиях, но мы не знаем, чему равнялась стадия. Историки сходятся во мнении, что оценка Эратосфена оказалась достаточно точной.
Решето Эратосфена представляет собой алгоритм поиска всех простых чисел путем последовательного исключения из числового ряда чисел, кратных уже известным простым. Рисунок 2 иллюстрирует этот метод на числах от 1 до 102, организованных так, чтобы процесс исключения кратных чисел был хорошо виден. Чтобы посмотреть, как все происходит, я советую вам составить эту или подобную ей схему самостоятельно, с нуля. Для начала начертите табличку и заполните ее числами, ничего не закрашивая и не перечеркивая. Затем потихоньку начинайте вычеркивать. Исключите 1, потому что это единица. Следующее число — 2, значит, оно простое. Вычеркните все числа, кратные 2: это те, что лежат на горизонталях, начинающихся с чисел 4, 6 и 8. Следующее невычеркнутое число — 3, следовательно, оно простое. Вычеркните все числа, кратные 3: это горизонтальный ряд, начинающийся с 6 (уже вычеркнут) и с 9. Следующее невычеркнутое число — 5, оно простое. Вычеркиваем все числа, кратные 5: они находятся на диагональных линиях, идущих слева снизу вверх направо и начинающихся на 10, 30, 60 и 90. Следующее невычеркнутое число — 7, оно простое. Вычеркиваем все числа, кратные 7: это диагонали, проходящие сверху слева вниз направо и начинающиеся на 14, 49 и 91. Затем 11 — оно не вычеркнуто, и это простое число. Первое число, кратное 11 и до сих пор не вычеркнутое (т. е. не имеющее меньших делителей) — 121, — находится за пределами нашей таблички. Процесс окончен. Оставшиеся числа в серых ячейках и есть искомые простые числа.
Решето Эратосфена — не просто историческая диковинка, это и сегодня один из наиболее эффективных методов составления длинных списков простых чисел. А родственные ему методы позволили достичь значительного прогресса в решении самой знаменитой, наверное, из великих нерешенных проблем, имеющих отношение к простым числам: проблемы Гольдбаха. Немецкий математик-любитель Кристиан Гольдбах переписывался со многими знаменитостями своего времени. В 1742 г. в письме к Леонарду Эйлеру он изложил несколько любопытных гипотез, связанных с простыми числами. Позже историки заметили, что Рене Декарт ранее писал примерно то же самое. Первое из утверждений Гольдбаха звучало так: «Всякое целое число, которое можно представить как сумму двух простых, можно записать также как сумму произвольного числа простых, пока все слагаемые не станут единицами». Второе утверждение, добавленное уже на полях письма, гласило: «Всякое целое число больше двух можно представить как сумму трех простых». Сегодняшнее определение простого числа предполагает очевидные исключения из обоих утверждений. Так, 4 не есть сумма трех простых, поскольку наименьшее простое число — 2, и сумма трех простых не может быть меньше 6. Однако во времена Гольдбаха число 1 считалось простым. Разумеется, его утверждения можно переформулировать в соответствии с современными представлениями.
В ответном письме Эйлер припомнил предыдущий разговор с Гольдбахом, когда тот указал, что первое его заявление является следствием более простой, третьей гипотезы: «Всякое четное целое есть сумма двух простых». С учетом общепринятого представления о 1 как о простом числе из этого утверждения прямо следует вторая гипотеза, поскольку любое число можно выразить как n + 1 или n + 2, где n — четное. Если n есть сумма двух простых, то исходное число есть сумма трех простых. Мнение Эйлера о третьем заявлении было однозначным: «Я считаю, что это, несомненно, верная теорема, хотя и не могу ее доказать». Собственно, на сегодняшний день статус этой гипотезы практически не изменился.
Современный подход, при котором 1 — не целое число, разбивает гипотезу Гольдбаха на две части. Вариант для четных чисел (так называемая бинарная проблема Гольдбаха) гласит: любое четное целое число больше двух можно представить в виде суммы двух простых чисел.
А вот вариант для нечетных (известный как тернарная проблема Гольдбаха): любое нечетное число больше 5 можно представить в виде суммы трех простых чисел.
Из бинарной гипотезы автоматически следует тернарная, но не наоборот{4}. Есть смысл рассматривать эти гипотезы по отдельности, поскольку мы до сих пор не знаем точно, верна ли хоть одна из них. Но, похоже, тернарная проблема немного проще, в том смысле что продвинуться в этом направлении удалось заметно дальше.
Бинарную гипотезу Гольдбаха для малых чисел можно подтвердить несложными вычислениями:
4 = 2 + 2;
6 = 3 + 3;
8 = 5 + 3;
10 = 7 + 3 = 5 + 5;
12 = 7 + 5;
14 = 11 + 3 = 7 + 7;
16 = 13 + 3 = 11 + 5;
18 = 13 + 5 = 11 + 7;
20 = 17 + 3 = 13 + 7.
Несложно продолжить ряд примеров вручную, скажем, до 1000 или около того, а можно и дальше, если хватит терпения. К примеру, 1000 = 3 + 997, а 1 000 000 = 17 + 999 983. В 1938 г. Нильс Пиппинг проверил бинарную гипотезу Гольдбаха для всех четных чисел вплоть до 100 000.
При этом выявилась общая тенденция: чем больше само число, тем больше способов представить его в виде суммы простых. Это отвечает здравому смыслу. Если вы возьмете большое четное число и начнете вычитать из него по очереди простые числа, с какой вероятностью все результаты этих действий окажутся составными? Достаточно в списке разностей появиться хотя бы одному простому числу, — и можно считать, что гипотеза для исходного числа подтверждена. Обратившись к статистическим свойствам простых чисел, можно оценить вероятность такого исхода. В 1923 г. аналитики Харольд Харди и Джон Литлвуд проделали такую операцию и вывели правдоподобную, но нестрогую формулу для числа способов представления заданного четного n в виде суммы двух простых чисел: это число приблизительно равно n/[2 (log n)²]. Это число увеличивается с ростом n и, кроме того, хорошо согласуется с числовыми данными. Но даже если математикам удалось бы сделать эту формулу точной, невозможно было бы исключить возможность того, что из нее существуют очень редкие, но все же исключения, так что формула не слишком помогает.
Основное препятствие, мешающее доказать гипотезу Гольдбаха, заключается в том, что она сочетает в себе две очень разные характеристики. Простые числа определяются через умножение, а в самой гипотезе речь идет о сложении. Поэтому необычайно трудно соотнести желаемый вывод с каким бы то ни было разумным свойством простых чисел. Такое впечатление, что рычаг просто некуда вставить. Должно быть, эти слова звучали настоящей музыкой в ушах владельцев издательства Faber & Faber, когда в 2000 г. они пообещали премию в 1 000 000 долларов за доказательство гипотезы. Сделано это было ради продвижения романа Апостолоса Доксиадиса «Дядя Петрос и проблема Гольдбаха»[2]. Сроки поджимали: решение необходимо было представить до апреля 2002 г. Премия эта так никому и не досталась, что едва ли удивительно, если учесть, что проблема Гольдбаха остается нерешенной уже более 250 лет.
Гипотезу Гольдбаха часто формулируют иначе — как вопрос о сложении множеств целых чисел. Бинарная проблема Гольдбаха — простейший пример такого подхода, поскольку при этом мы складываем всего лишь два множества. Для этого нужно взять любое число из первого множества, добавить к нему любое число из второго и составить из всех таких сумм свое, третье множество. Так, сумма множеств {1, 2, 3} и {4, 5} содержит 1 + 4, 2 + 4, 3 + 4, 1 + 5, 2 + 5, 3 + 5, т. е. {5, 6, 7, 8}. Некоторые числа возникают здесь не по одному разу; к примеру, 6 = 2 + 4 = 1 + 5. Я называю подобные повторы перекрытием.