В первых исследованиях по изучению действия антител, проведенных в 1896 году, Ландштейнер установил, что лабораторные культуры бактерий могут быть агглютинированы путем добавления иммунной сыворотки крови. Поскольку Ландштейнер хотел полностью сосредоточиться на изучении иммунитета, он в 1898 годжу перешел на кафедру патологической анатомии Венского университета. Здесь он начал работать под руководством Антона Вейхсельбаума, ученого, обнаружившего возбудителей менингита и пневмонии.
В 1900 году доктор Карл Ландштейнер, наблюдая своих пациентов в больнице, которым переливали одну и ту же кровь в лечебных целях, заметил, что не вся кровь одинакова, так как не все больные выздоравливали, а некоторые даже умирали.
В то время врачи не знали, почему люди умирали и с чем были связаны осложнения, спровоцированные переливанием крови. Ландштейнер поставил точку в этом вопросе в 1900 годах, когда открыл группы крови человека. Группы – это типы крови, которые различаются по иммунологическим признакам. В ходе экспериментальных исследований он понял причину и сделал большое открытие.
Карл Ландштейнер, тогда ассистент Венского института патологии, взял кровь у себя и пяти своих сотрудников, отделил сыворотку от эритроцитов с помощью центрифуги и смешал отдельные образцы эритроцитов с сывороткой крови разных лиц и с собственной. В совместной работе с Л. Янским по наличию или отсутствию агглютинации Ландштейнер разделил все образцы крови на три группы: А, В и 0. Два года спустя ученики Ландштейнера, А. Штурли и А. Декастелло, открыли четвертую группу крови – АВ. Обратив внимание на то, что собственная сыворотка крови не дает агглютинации со «своими» эритроцитами, ученый сделал вывод, известный сегодня как непреложное правило Ландштейнера: «В организме человека антиген группы крови (агглютиноген) и антитела к нему (агглютинины) никогда не сосуществуют». За свои открытия Ландштейнер получил в 1930 году Нобелевскую премию.
Метод Ландштейнера переливания крови дал возможность безопасно переливать кровь одного человека другому.
В 1914 году Ричард Льюисон обнаружил антикоагулирующие свойства цитрата натрия и пришел к выводу, что добавление этого вещества в кровь предупреждает ее свертывание. Тем самым был найден способ консервации крови и появилась возможность хранить донорскую кровь при условии ее охлаждения до трех недель. Это было большое достижение, т. к. операции на сердце, легких и сосудах, которые раньше практически не проводились из-за большой кровопотери, теперь стали возможны. Кроме того, появилась возможность полного обменного переливания крови при интоксикациях и тяжелой желтухе новорожденных.
В 1940 году Ландштейнер и его коллеги Александр Винер и Филипп Левин описали еще один фактор крови человека – так называемый резус, или Rh-фактор. Была обнаружена связь между этим фактором и гемолитической желтухой новорожденных. Оказалось, что если у матери отсутствует резус-фактор (т. е. резус-фактор отрицателен), то резус-положительный плод может приводить к выработке у матери антител против резус-фактора плода. Эти антитела вызывают гемолиз эритроцитов плода, в результате чего гемоглобин превращается в билирубин, что и является причиной желтухи.
В 1916 году женился на Хелен Власто. В 1917 году у них родился сын Эрнст.
В 1930 году Ландштейнеру была присуждена Нобелевская премия по физиологии и медицине «за открытие групп крови человека».
24 июня 1943 года у Ландштейнера в лаборатории за рабочим столом начался тяжелый приступ стенокардии. Его госпитализировали в клинику Рокфеллеровского института. Двумя днями позже (26 июня) он скончался.
В мае 2005 года, в ходе 58-й сессии Всемирной ассамблеи здравоохранения, в Женеве было принято решение 14 июня (день рождения Карла Ландштейнера), ежегодно проводить Всемирный день донора крови.
Карл Ландштейнер был удостоен таких наград и почетных званий, как Берлинская премия Фонда Ханса Аронсона, золотая медаль нидерландского общества Красного Креста, премия Камерона и звание почетного лектора Эдинбургского университета. Он был также кавалером французского ордена Почетного легиона. Ландштейнер был членом Национальной академии наук США, Американского философского общества, Американского общества натуралистов, Американской ассоциации иммунологов, Французской академии наук, Нью-Йоркской медицинской академии, Филадельфийского общества патологов, Общества патологов Великобритании и Ирландии, Лондонского королевского научного общества, Лондонского королевского медицинского общества, Датской королевской академии наук, Шведской королевской академии наук и искусств и Шведского медицинского общества.
Эйнтховен Виллем(1860—1927)Нидерландский физиолог, основоположник электрокардиографии
Виллем Эйнтховен родился в Семаранге на острове Ява (Нидерландская Восточная Индия, в настоящее время – Индонезия), в семье врача Иакова Эйнтховена и Луизы Эйнтховен (де Вогель). Виллем был третьим из шестерых детей в семье. Когда мальчику исполнилось шесть лет, его отец умер, и в 1870 году семья вернулась в Нидерланды, в город Утрехт. Здесь Виллем закончил школу и в 1879 году поступил на медицинский факультет Утрехтского университета. Большой любитель спорта, Виллем был президентом союза гимнастов и фехтовальщиков и основал студенческий клуб по гребле в Утрехте. Еще в студенческие годы он опубликовал работу, касающуюся функций локтевого и плечевого суставов, основанную на наблюдениях за полученной им во время спортивных занятий травмой лучезапястного сустава.
В 1885 году Эйнтховен защитил диссертацию, посвященную проведению стереоскопии посредством дифференцировки цветов, и получил докторскую степень. В этом же году в возрасте 25 лет он был назначен профессором физиологии Лейденского университета и занимал эту должность до самой смерти.
Несмотря на то что получил профессию врача-физиолога, Эйнтховен серьезно интересовался физикой. Он накопил большой опыт в разработке самых современных приборов для количественной оценки физиологических процессов.
Электрофизиология – наука об электрических явлениях, возникающих в процессе жизнедеятельности организма.
В 1880 году было признано, что сокращение сердца сопровождается электрическими явлениями, однако единственным способом, позволяющим регистрировать «сердечные токи», было прямое наложение электродов на обнаженное сердце. В 1887 году английский физиолог Август Уоллер обнаружил, что изменения потенциалов, возникающие при сокращении сердца, можно записать с помощью электродов, наложенных на поверхность тела интактного животного.
Большинство экспериментов сначала было проведено на его любимом бульдоге Джимми, ставшем в то время, пожалуй, самым популярным псом в Британии.
Подобные токи записывались с помощью капиллярного электрометра – прибора, состоящего из ртутного столбика, поднимающегося и опускающегося в зависимости от изменения электрического поля. При этом записывалась так называемая электрокардиограмма (ЭКГ), которая была чрезвычайно несовершенной, поскольку ртутный столбик обладал высокой инерцией. Эйнтховен установил, что при такой записи можно получить точную ЭКГ, если вносить в нее коррективы с помощью довольно кропотливых математических расчетов.
Для того чтобы избежать подобных расчетов, Эйнтховен разработал прибор, с помощью которого можно было точно записывать небольшие колебания электрических потенциалов. Работа над прибором заняла у него шесть лет, и в результате был создан струнный гальванометр.
Струнный гальванометр произвел настоящую революцию в изучении заболеваний сердца. С помощью этого прибора врачи получили возможность точно регистрировать электрическую активность сердца и с помощью регистрации устанавливать характерные отклонения на кривых ЭКГ.
Первый электрокардиограф был весьма громоздким сооружением и весил около 270 кг. Его обслуживанием были заняты пять сотрудников. Тем не менее, результаты, полученные Эйнтховеном, были революционными. Впервые в руках врача оказался прибор, столь много говорящий о состоянии сердца.
В одном из экспериментов Эйнтховен вместе с сыном Виллемом, инженером-электриком, использовал струнный гальванометр для приема радиотелеграмм с острова Ява.
Впоследствии Виллем Эйнтховен-младший разработал вакуумный струнный гальванометр, используемый для беспроволочной связи.
С помощью строчного гальванометра Эйнтховен записывал электрические изменения в сетчатке, вагусном нерве и симпатическом ганглиевом узле, и, благодаря исключительно высокой чувствительности прибора сумел установить импульсную активность симпатической нервной системы.
Но электрокардиография остается его основным наследием.
В 1924 году Эйнтховену была присуждена Нобелевская премия по физиологии и медицине за «открытие механизма электрокардиограммы». Когда Эйнтховен в первый раз прочитал эту новость в Boston Globe, он подумал, что это либо шутка, либо опечатка.
На момент объявления лауреатов Нобелевской премии 1924 года, Эйнтховен путешествовал по США. Карл Сигбахн, Нобелевский лауреат того же года в области физики, также не смог приехать в Стокгольм – церемония награждения не состоялась своевременно.
В Нобелевской лекции Эйнтховен привел много примеров ЭКГ при нарушениях ритма и их связь с сердечными тонами. Он закончил свою речь словами благодарности в адрес других исследователей: «Новые страницы в научных исследованиях заболеваний сердца были открыты не одним человеком, а многими талантливыми людьми, чьи работы стали известны далеко за пределами их государств».
В том же году он получил ещё одну премию с формулировкой «За открытие техники электрокардиограммы».
Следует отметить, что ЭКГ не диагностирует. ЭКГ не может служить средством диагностики пороков и опухолей сердца, так как появляющиеся при этих заболеваниях изменения кардиограммы могут являться лишь косвенными признаками болезни. На ЭКГ не регистрируются шумы сердца. Не отражает ЭКГ и гемодинамику, т. е. то, как кровь течет в полостях сердца. ЭКГ в покое может не выявлять целый ряд заболеваний сердца, в том числе ИБС и нарушения сердечного ритма. Для диагностики этих заболеваний необходимо проведение суточного мониторирования ЭКГ или нагрузочных проб. Однако, не смотря на свои ограничения, о которых надо знать ЭКГ остается доступным и действенным методом диагностики, который обязательно стоит проходить при регулярных медицинских осмотрах.