Великий треугольник, или Странствия, приключения и беседы двух филоматиков — страница 31 из 37

— Как? Разве разговор не закончен? — удивляется Мате.

— Нет, мсье, мы как раз подошли к самому главному. А главное для мае с вами — отнюдь не устройство машины, а идея. Да, да, идея, которая подтолкнула мсье Паскаля к ее созданию. Он, если помните, руководствовался утверждением Декарта, полагавшего, что мозгу человеческому свойствен некий автоматизм и что многие умственные процессы, по сути дела, ничем не отличаются от механических. Иными словами, мозг столько же автомат, сколько живой орган. Долгие годы работы заставили Паскаля не только утвердиться в этой мысли, но и углубить ее. Он понял, что действия арифметической машины даже ближе к мыслительному процессу, нежели то, на что способен живой мозг…

— Что?! — взвивается Мате. — У Паскаля есть такая запись? Но ведь это же одно из тех положений, на которых основана кибернетика!

— В том-то и дело, мсье! И значит, у нас с вами есть все основания считать Паскаля ее отдаленным предшественником, что совершенно необходимо отметить еще одной чашкой чая.

Хозяин, улыбаясь, принимает у черта пустую чашку. Но что это? Рисунок на ней. опять изменился! Теперь там изображены они сами — Фило, Мате и Асмодей в своем маркизовом обличье, восседающие на крыше руанской судебной палаты.

Улыбка медленно сползает с круглой физиономии Фило. Неужели его заставят копаться в теореме Дезарга? К счастью, эта неприятная для него операция переносится на другое время. Зато разговор о своей собственной теореме Мате откладывать не намерен. И многострадальный филолог покоряется своей участи.

— Итак, — говорит Мате, — напоминаю суть теоремы. Если на сторонах произвольного треугольника построить снаружи или внутри (значения не имеет) по равностороннему треугольнику и соединить прямыми их центры тяжести, то полученный таким образом новый треугольник тоже будет равносторонним.

— Насколько я понимаю, именно это и нуждается в доказательстве, — капризно замечает Фило.

— Совершенно верно. Какого рода доказательство вы желаете получить? Общее или частное — на числовом примере?

— Достаточно будет и частного!

— Понятно, — ядовито кивает Мате. — Тогда к общему виду потрудитесь привести его самостоятельно. А теперь вычертим произвольный треугольник и выберем систему координат с началом в одной из вершин треугольника. Скажем, в точке О. Ось иксов направим вдоль стороны ОВ. — Говоря это, Мате набрасывает чертеж в своем неизменном блокноте. — Как видите, координаты вершины О — нуль, нуль; вершины А — четыре, пять; вершины В — девять, нуль. Теперь нетрудно вычислить и размеры сторон треугольника.

— По известной формуле, — сейчас же соображает Асмодей. — Квадрат расстояния между двумя точками равен сумме квадратов разностей координат этих точек, иначе говоря

d2 = (X1 ― X2)2 + (Y1 ― Y2)2

— Очень хорошо. Подставим в эту формулу координаты соответствующих вершин треугольника. Тогда:

ОА2 = 42 + 52 = 41, а ОА = √41; OB2= 81, а ОВ = 9 и АВ2= (9  4)2 + 52= 50, а АВ = √50 = 5√2.

Ну, а теперь построим на сторонах нашего треугольника новые треугольники, на сей раз равносторонние. Намечаю их пунктиром. Буквами п, т и р обозначим точки пересечения медиан в каждом из них. Это и будут их центры тяжести. Точки эти, как известно, находятся на расстоянии двух третей медианы, считая от вершины. В первом равностороннем треугольнике это Am = Oт. Во втором — An = Вп. В третьем — Вр = Ор. Но так как в равностороннем треугольнике медианы являются в то же время и высотами, а высота в этом случае равна половине стороны, умноженной на √3, то

Am = mO = 2/3 AO√3/2 = AO√3/3,

An = Bn = AB√3/3 и

Bp = Op = OB√3/3.

Иначе:

(Am)2 = (mO)2 = AO2/3 = 41/3;

(An)2 = (Bn)2 = AB2/3 = 50/3;

(Bp)2 = (Op)2 = OB2/3 = 27.

Мате на мгновение отрывается от чертежа и, убедившись, что Фило еще жив, продолжает:

— Далее обозначим искомые координаты центров тяжести равносторонних треугольников. Точки т: х11; точки п: х2, y2; точки р: x3, у3. Займемся сперва одним треугольником и по известной уже нам формуле о квадрате расстояния между двумя точками вычислим, что

(Am)2 = (Om)2 = (x1 ― 4)2 + (y1 ― 5)2 = x12 + y12 = 41/3.

Решая систему двух уравнений:

(x1 ― 4)2 + (y1 ― 5)2 = x12 + y12и

x12 + y12 = 41/3,

найдем, что

x1 = 2 ± 5√3/6; y1 = 2,5 ± 2/3√3.

— А как это у вас получилось? — неожиданно для себя самого интересуется Фило.

— По-моему, это понятно всякому школьнику, — сердито отвечает Мате.

— Допустим. А как же быть с двумя знаками перед вторыми слагаемыми? Какой из них выбрать?

— Ну, а это уж где как. Обратите внимание на то, что первые слагаемые (2 и 2,5) — это координаты середины стороны ОА. В самом деле:

(O + 4)/2 = 2 и (O + 5)/2 = 2,5.

А точка т лежит слева от этой середины, но выше ее. Следовательно, в первом равенстве (x1) надо сохранить знак минус, а во втором 1) знак плюс. Поэтому окончательно:

x1 = 2 ― 5√3/6; y1 = 2,5 + 2/3√3.

Точно таким же образом найдем координаты точек п и р:

х2 = 6,5 + 5/6√3, у2 = 2,5 + 5/6√3;

x3 = 4,5, y3 = ―3/2√3.

Остается вычислить расстояния между т и n, п и р, р и т. Обозначим их буквой d с соответствующими индексами: mn, np и рт. Тогда:

d2mn = (6,5 + 5/6√3 ― 2 + 5/6√3)2 + (2,5 + 5/6√3 ― 2,5 ― 2/3√3)2 = 86/3 + 15√3.

Если теперь вычислить d2npи d2pm, окажется, что все три результата одинаковы:

d2mn = d2np = d2pm = 86/3 + 15√3.

Ну, а раз равны квадраты расстояний, то равны и сами расстояния. Стало быть, соединив точки т, п и р, мы получим равносторонний треугольник.



— Квод демонстрандум эрат! Что и требовалось доказать, — торжественно заключает Асмодей.

— Не забудьте рассмотреть еще два частных случая первоначального треугольника, — суетливо напоминает Мате. — Когда сумма двух сторон равна третьей и когда одна из сторон равна нулю. — Он протягивает Фило и Асмодею заранее заготовленные чертежики. — Как видите, моя теорема справедлива также и для них.

— Благодарю вас, мсье! Поверьте, мне было чрезвычайно интересно! Поздравляю с удачей! — рассыпается бес, но вдруг совершенно неожиданно зевает и страшно смущается. — Пардон, мсье! Не подумайте, что это от вашей теоремы. Всему виной чай. Он всегда действует на меня, как снотворное. С вашего разрешения я вздремну немножко…

Он взлетает на верхнюю полку и скрывается в книге Лесажа, с силой захлопнув за собой картонную обложку. В ту же минуту оттуда начинает исходить легкое блаженное похрапывание: «Хрр-фью… хрр-фью…»

Филоматики растроганно переглядываются.

— Перерыв?

— Перерыв!

Вечер чайного дня

— Открываем наше вечернее заседание, — объявляет Фило, когда все они снова сидят за столом и Асмодей кулачком протирает заспанные глаза. — Что у нас на повестке… пардон, на чашке дня?

Бес молча указывает на рисунок, где три блистательных кавалера и одна изысканная дама играют в карты.

— Эпизод под названием «В великосветском салоне», — определяет Фило.

Все еще позевывая, Асмодей заглавие одобряет, считает, однако, необходимым добавить, что к этому эпизоду примыкает еще один: «Встреча на улице Сен-Мишель», связанный с ним общей темой «Теория вероятностей». Кроме того, прежде чем перейти к обсуждению, не мешает установить дату…

Мате уверенно объявляет, что разговор за карточным столом мог быть только зимой 1654 года.

— Почем вы знаете? — любопытствует Фило.

— Да потому что речь, если помните, шла о переезде Паскаля и герцога Роанне в Пор-Рояль. Отсюда следует, что интересующий нас эпизод происходил уже после обращения Паскаля, которое, как я выяснил, относится к 23 ноября 1654 года. И судя по тому, что маркиза об этом узнать не успела, разговор ее с де Мере отстоит не слишком далеко от указанной даты. Он мог состояться в конце ноября или в начале декабря.

— Мог-то мог, но вот состоялся ли? — неосторожно прорывается у Фило.

— Пф! — Асмодей возмущенно фыркает и просыпается окончательно. — Не все ли равно! Важно другое: убедительно или неубедительно? Вероятно или невероятно?

— Вероятно, вероятно! — дружно успокаивают его филоматики.

— Вот и перейдем к задачам о вероятностях, о которых так красноречиво рассказывал шевалье де Мере, — ловко поворачивает разговор черт. — Начнем, как полагается, с начала, то есть с первой задачи. Суть ее такова: двое играют в кости, бросая по два кубика сразу. Первый ставит на то, что хотя бы один раз выпадут две шестерки одновременно. Другой — на то, что две шестерки одновременно не выпадут ни разу. Спрашивается, сколько надо сделать бросков, чтобы шансы на выигрыш первого игрока превысили шансы второго.



— Ясно, что здесь возможны 36 комбинаций, — говорит Мате.