Карл СаббагВеревка вокруг Земли и другие сюрпризы науки
Введение
За те долгие годы, что я интересовался наукой, в моей голове скопилась уйма фактов, анекдотов и любопытных случаев. Многие из них легли в основу очерков, из которых состоит эта книга.
Вам предстоит прочитать об авианосце, построенном из льда и опилок; о технике предсказания атомных взрывов на основе экстрасенсорных способностей; об ученом, которого удушило собственное изобретение; о даме-философе, которая убеждена: если бы в мире было больше женщин-ученых, наука двигалась бы по совершенно иному пути; о бедной негритянке, чьи раковые клетки сейчас находятся в тысяче лабораторий по всему миру; и о ядерном реакторе возрастом в два миллиарда лет. Вы найдете здесь ответы на вопросы, которыми, может, даже никогда и не задавались, например: почему по ночам небо темное? Почему, когда мы переводим взгляд, мир не движется? Действительно ли нам необходим мозг? Могут ли деньги принести счастье? Могут ли слепые видеть? В самом ли деле 1 + 1=2?
Однако эти очерки написаны не просто ради того, чтобы потешить публику. Многие из них помогут нам разобраться, как в действительности устроены астрономия и математика, биология и физика и каким образом ученые находят подтверждения выдвинутым гипотезам.
Например, чтобы ответить на вопрос, почему небо по ночам темнеет, которым человечество задается уже не одну сотню лет, требуется применить теорию о расширении Вселенной, сформулированную только в XX столетии. Вопрос, могут ли слепые видеть, относится к сфере новейших исследований в области нейрофизиологии. А открытие вещества, названного арсолом, помогает нам разобраться, по какому принципу ученые дают имена свеженайденным химическим соединениям.
Земля и небо
И что, вот это кругленькое — письмо?
Итак, внимание: пророчество. Через сорок тысяч лет в одной соседней планетной системе у граммофона (звуковоспроизводящего устройства, которое мы смутно помним благодаря фильмам середины XX столетия) соберется компания пришельцев. Они поднимут рычажок, и игла мягко опустится на пластинку, кружащуюся со скоростью 33 оборота в минуту. И тогда они услышат (если, конечно, у них будут уши, чтобы слышать) приветствие на аккадском языке, на котором говорили в Месопотамии примерно шесть тысяч лет назад.
Как и многие пророчества, оно звучит довольно странно. Но при этом имеет вполне логичное обоснование. В 1977 году НАСА[1] отправило в космос два космических аппарата: «Вояджер-1» и «Вояджер-2». В их задачи в основном входил сбор данных (включая фотографии) о Юпитере, Сатурне и их спутниках. Затем аппараты должны были продолжить путешествие и преодолеть гигантское расстояние, отделяющее нашу Солнечную систему от ближайших к ней звезд.
Каждый «Вояджер» был размером с небольшой автомобиль, и на борту его помимо прочего имелась так называемая фонографическая запись — ученые рассчитывали (или, во всяком случае, надеялись), что когда-нибудь в далеком будущем представители внеземной цивилизации наткнутся на один из «Вояджеров», отыщут необычный на вид диск и включат воспроизводящее устройство. Если они догадаются это сделать, то прослушают запись длительностью примерно один час, содержащую приветствия на многих языках Земли и разнообразные земные звуки, например шум автобуса и трактора, ржание лошади. На пластинке также были записаны 115 фотографий, среди которых есть портрет женщины с рожком мороженого и мужчины, поедающего кусок пиццы.
В 1977 году самой передовой технологией записи и воспроизведения звука была долгоиграющая пластинка. Первый патент на предшественника современных компакт-дисков будет выдан компании «Сони» лишь в 1980 году. Так что же станут делать инопланетяне через 40 000 лет — как минимум столько времени потребуется, чтобы «Вояджер» достиг ближайших звездных систем, — увидев круглую пластину с тончайшей резьбой, идущей по спирали от наружного края вовнутрь? Как они догадаются, что там записана информация о далекой планете и о том, чем занимались ее жители в 1977 году?
В качестве подсказки для пришельцев сотрудники НАСА изобразили на обложке пластинки граммофонный иглодержатель — вид сверху и сбоку. Снабдить инопланетян письменными инструкциями, понятное дело, невозможно, поэтому специалисты НАСА попытались изобразить всё при помощи схем: как работает иглодержатель, почему нужно, чтобы пластинка вращалась, какая нужна скорость вращения и как преобразовать черточки, считываемые иглой, в звуки или картинки. А чтобы инопланетяне не сомневались, откуда прибыл «Вояджер», умельцы из НАСА выгравировали карту, показывающую расположение Солнечной системы по отношению к 14 пульсарам, звездам со строго определенным периодом вращения, которые, скорее всего, должны быть известны пришельцам.
Весь этот проект являет собой победу надежды над научными прогнозами. Что уж говорить об инопланетянах, если даже реакцию людей из далекого будущего на такую пластинку предсказать сложно. Технический прогресс движется вперед семимильными шагами, так что невозможно даже вообразить, насколько мир 42 000 года будет отличаться от того, каким он был в 1977-м. Может быть, люди разберутся, для чего нужен иглодержатель (как и рассчитывало НАСА), а может, решат, что это какой-то поезд, движущийся по закрученным спиралью рельсам. Или просто вытащат пластинку из конверта и начнут кидать ее друг другу на манер фрисби (популярное в середине XX века, а ныне почти забытое развлечение). Да и то лишь в случае, если у людей к тому времени останутся глаза и способность разбираться в схемах. Но кто знает, какими органами чувств будут обладать разумные формы жизни где-то там во Вселенной и смогут ли они понять, для чего нужна эта пластинка? На каком уровне будут находиться их технологии и инженерная мысль и будут ли они в состоянии изготовить иглодержатель, вращающий механизм, регулятор скорости и динамик? И будут ли у них глаза, чтобы видеть, и уши, чтобы слышать, когда они запустят свой небесный проигрыватель?
Идея послать в космос набор с инструкциями «как собрать воспроизводящее устройство» кажется смешной уже сейчас, в эпоху, когда звуки и изображения хранятся на жестких дисках, чья вместительность с каждым годом возрастает в десять раз, а айподы способны хранить звуковую запись длительностью не один час, как пластинка на «Вояджере», а 80 суток. Эти новейшие технологии легли в основу более «свежего» космического проекта — спутника под названием «КЕО», который планируется запустить на орбиту в 2011 году[2]. «КЕО» сможет нести на борту любое количество посланий от каждого жителя Земли, который пожелает принять участие в проекте. Послания эти будут записаны на специальные стеклянные DVD, защищенные от радиации. Стоит ли говорить, что на борту также будут находиться инструкции, как соорудить DVD-плеер? Не менее очевидно, что всего через несколько лет такая система записи и считывания информации может устареть, как сейчас выглядит устаревшей пластинка, улетевшая на «Вояджере». Но, в отличие от небольшого объема информации на пластинке с «Вояджера», емкость дисков на «КЕО» позволит записать и сохранить в сжатом виде послание длиной до четырех страниц от каждого жителя Земли.
Однако не все полагают этот способ установить контакт с внеземными формами жизни таким уж удачным. Еще во времена запуска «Вояджера» ведущий британский радиоастроном профессор сэр Мартин Райл выступил с протестом против программы НАСА, заявив, что, дав о себе знать и обозначив свое точное местонахождение во Вселенной, мы предоставим инопланетянам (в случае, если они вынашивают коварные намерения или просто проголодались) шанс на уничтожение человечества — разумеется, при условии, что к тому времени, как они прилетят, будет кого уничтожать. Но уже в 1977 году подобные опасения казались анахронизмом. Любая внеземная цивилизация, будь она хоть сколько-нибудь разумной, узнает все необходимое о быте землян, просто посмотрев научно-популярные программы Дэвида Аттенборо[3] и прочую продукцию земного телевидения. Решат ли они в итоге заглянуть в гости или сочтут, что Землю лучше облетать стороной, — это еще вопрос.
Вселенная — это вам не сарай
В 1991 году британская художница Корнелия Паркер создала инсталляцию под названием «Холодное темное вещество: картина взрыва». Способ создания был такой: она забила садовый сарай всяким барахлом, найденным у себя, а также в сараях ее друзей, а потом договорилась с британскими военными, чтобы те все это взорвали. Паркер собрала обломки и соединила в инсталляцию, изображающую сарай через миг после взрыва, когда стены и содержимое разлетаются в разные стороны.
Ученые обожают так называемые мысленные эксперименты, когда новые идеи могут возникнуть в процессе проведения воображаемого опыта, который было бы очень сложно или вовсе невозможно осуществить в реальности. Один из вариантов мысленного эксперимента с сараем Паркер — представить, как обломки разлетаются, а потом заставить их двигаться обратно, чтобы они вернулись на свои исходные места, снова соединившись в сарай и его содержимое. Подобного рода воображаемые процессы ученые-космологи устраивают со Вселенной и получают при этом удивительные результаты.
Вселенная расширяется, звезды и галактики постепенно отдаляются друг от друга, как обломки сарая Корнелии Паркер. Ученые восстановили историю Вселенной, представив себе, как ее составные части возвращаются на свои места. Использовав знания о массах и скоростях и кучу других данных из области физики, они проследили ход истории на 12–15 миллиардов лет назад, к той точке во времени и пространстве, с которой, можно сказать, и началась наша Вселенная, к событию, получившему название Большой взрыв. Большую часть этого огромного рассмотренного периода времени Вселенная вела себя как сарай Паркер, если прокрутить происходящее обратно: любой желающий, даже если он не имеет никакого отношения к науке, может представить себе звезды и галактики (в том числе и некую материю, получившую название «холодное темное вещество»), сходящиеся на большой скорости к некой центральной точке. Но когда мы окажемся в прошлом примерно за 300 000 лет до Большого взрыва, картинка полностью изменится. Благодаря законам атомной физики в условиях высоких температур и давления возникнет картина первых мгновений жизни Вселенной, и она будет столь же странной и невообразимой, как любое из полотен Дали или Магритта. Это будет столь же причудливая картина, как если бы сарай Паркер, достигнув изначального состояния, продолжал сжиматься, по мере уменьшения его форма менялась бы, а дерево, металл и ткань в нем трансформировались бы в сыр, неон, бриллианты, одеколон и наконец превратились бы в крошечную точку размером с атом и с температурой, как в самом центре Солнца.
«Если история физики чему-то нас и научила, — написали недавно в своей статье два неких физика, — так это тому, что истинная природа Вселенной может лежать далеко за пределами нашей способности представлять себе что-либо». Это все, конечно, хорошо, но люди так уж устроены, что, когда им нужно понять сложные научные объяснения, они в первую очередь пытаются представить себе картинку. И чем дальше наука отходит от непосредственных наблюдений, углубляясь в теории, тем сложнее не-ученым разобраться, что же ученые имеют в виду.
Теория, претендующая на описание первых лет, дней и секунд существования Вселенной, имеет под собой серьезные основания. Она успешно объясняет наблюдения, которые раньше ставили астрономов и космологов в тупик, а сделанные на ее основе предсказания подтверждаются в ходе все новых экспериментов с использованием спутников. В прошлом те, кто верил, что Земля круглая, подкрепляли свое мнение общеизвестным наблюдением: когда корабль отплывает, с берега кажется, будто он исчезает, словно бы тонет, хотя вроде бы с такого расстояния он все еще должен быть виден. Сторонники все той же теории о «круглой Земле» предсказали, что если корабль будет плыть с востока на запад, не меняя направления, то рано или поздно он окажется в исходной точке. Многочисленные наблюдения и сбывшиеся прогнозы подтвердили теорию, и теперь о том, что Земля круглая, известно всем. Сходное сочетание наблюдений и прогнозов лежит и в основе версии о рождении Вселенной.
Вот что, по мнению ученых, тогда происходило.
В первую секунду, самый короткий отрезок времени, который каждый из нас способен реально представить, Вселенная расширилась из бесконечно горячего объекта с практически нулевым радиусом до сферы радиусом четыре световых года (около 40 000 000 000 000 километров). Одновременно она остыла до 10 000 000 000 градусов (для сравнения — температура в центре Солнца составляет всего 15 000 000 градусов). В эту же первую секунду одно за другим произошли несколько событий, которые я сейчас перечислю — не потому что надеюсь, будто вы поймете их смысл (я лично и сам не понимаю), а просто чтобы продемонстрировать, как работает научное воображение, свободное от необходимости соотносить свои идеи с реальным миром:
— Квантовая длина волны Вселенной была больше, чем размеры самой Вселенной.
— В планковском времени законы симметрии рушатся. Возникает сила тяжести. Мы вступили в эру Теории Великого объединения. Здесь проходит квантовая граница общей теории относительности.
— Предел возмущающего взаимодействия — термализация Вселенной (замедление до тепловой энергии).
— Великое объединение и разрушение спонтанной симметрии.
— Вселенная приходит в состояние, называемое «ложным вакуумом».
— Начало эры электрослабых взаимодействий.
— Конец эры электрослабых взаимодействий. Электрослабое взаимодействие распадается на две отдельных составляющих: слабое взаимодействие и электромагнитное взаимодействие.
(Отрезок времени, в который уложились два последних события, ничтожно мал. Электрослабая «эра» длилась с 1/100000 000 000 000 000 000 000 000 000 000 секунды после возникновения Вселенной по 1/100 000 000 000 секунды.) К тому моменту, как после Большого взрыва прошло 2/10000 000 секунды, Вселенная достигла размеров Солнечной системы и остыла до 10 000 000 000 000 градусов.
Я мог бы и дальше описывать подобные ошеломляющие серии событий, имевших место между первой секундой и первой минутой, первой минутой и первым часом и так далее, пока не дошел бы до примерно миллиарда лет со времени Большого взрыва, когда Вселенная наконец приобрела сходство с тем местом, где живем мы с вами.
Но в данном случае никто не ожидает, чтобы мы разобрались во всех этих стадиях и запомнили их назубок, — важно осознать, что математики и физики взывают к иному, параллельному типу понимания, нежели тот, к которому большинство из нас прибегает в повседневной жизни. Как часто мы, пытаясь понять ученых, заставляем их переводить свои слова на «простой язык». Но если бы научные истины поддавались изложению на простом языке, ученые, безусловно, им бы и пользовались. Вот как можно выразить события «простым языком»: Вселенная образовалась из бесконечно малой точки с бесконечно высокой температурой, — звучит туманно или даже бессмысленно. Лучшая из известных мне попыток объяснить суть этого процесса такова: предположительно в начале времен все пространство было наполнено энергией и благодаря расширению бесконечно малой, бесконечно плотной и бесконечно горячей точки произошла наша, наблюдаемая Вселенная, однако это была всего лишь одна точка в огромном количестве энергии, и мы не знаем и не в состоянии определить, что произошло со всем остальным пространством, — быть может, каждая точка в нем точно так же расширилась, приведя к образованию других Вселенных, недоступных нашему восприятию.
Подведем итог: единственные термины, адекватно передающие то, что происходило при возникновении Вселенной, — это математические категории, и, чтобы понять этот процесс, мы должны выучить иной язык — математический. Или можно обратиться за помощью к «переводчику», то есть к ученому, чем мы зачастую с радостью и пользуемся.
Космическая соразмерность
Полное солнечное затмение — одно из самых красивых зрелищ. Большинство очевидцев никогда не забудет тот миг, когда темный диск Луны оказывается точнехонько поверх светящегося диска Солнца и на минуту или две становится видна окружающая Солнце газообразная оболочка, которую в обычных условиях затмевает гораздо более яркая солнечная поверхность. Этот небесный спектакль можно наблюдать раз или два в год то в одной точке Земли, то в другой. А вот чтобы увидеть его в том же месте во второй раз, придется ждать около 400 лет. Тем не менее это явление было известно еще представителям самых разных древних цивилизаций: от древних греков до индейцев Центральной Америки — и входило в их картину мира как редкое, волнующее и значительное событие.
А ведь ничего этого не было бы, если бы не космическая соразмерность. Если бы Луна была чуть поменьше или располагалась бы чуть подальше, никто не смог бы насладиться красотой затмения. (А если бы Солнце было крупнее или ближе, мы, скорее всего, вообще не смогли бы ничем наслаждаться.) Точное наложение Луны на Солнце целиком завязано на число 400. Диаметр Солнца в 400 раз больше диаметра Луны, однако наше светило находится от Земли в 400 раз дальше, чем Луна, то есть видимые нам диаметры этих двух небесных тел — Солнца и Луны — одинаковы, хотя к тому нет никаких физических или астрономических предпосылок. Луна, вероятнее всего, возникла в результате грандиозного столкновения Земли и другого небесного тела, и ее формирование никак не связано с расстоянием до Солнца и его размерами, а окончательные габариты Луны сложились под влиянием силы тяжести и движения в околоземном пространстве обломков, оставшихся после столкновения.
Один американский астроном по имени Гильермо Гонсалес (р. 1963), исповедующий антропный принцип[4] (см. главу «Могли разум породить Вселенную?»), не побоявшись насмешек со стороны коллег, заявил, что возникновение на Земле разумной формы жизни и феномен полного затмения тесно связаны, и указал на тот факт, что Луна за миллионы лет постепенно отдалялась от Земли и достигла той точки, которая обеспечила полные затмения, одновременно с зарождением разумной жизни. Затем он пришел к еще более поразительному умозаключению: по его мнению, при всем множестве солнечных систем и планет разумные формы жизни могут появиться только там, где происходят полные солнечные затмения.
Кстати, это совпадение размеров — штука не вечная. Наши потомки, которые будут жить на Земле через 200 миллионов лет, не смогут наблюдать полное затмение во всем его великолепии, поскольку Луна отодвинется от Земли слишком далеко. Максимум, на что им придется рассчитывать, — это кольцеобразное затмение, которое выглядит как яркий бублик солнечного цвета с темным кругом в центре. Если бы Марс был обитаем, его жители тоже лицезрели бы лишь кольцеобразные затмения. Одна из марсианских лун, Фобос, по своим размерам на четверть меньше, чем видимый с Марса диск Солнца.
И вот вам напоследок одна интересная особенность наших суждений о видимых размерах небесных тел. Спросите своих знакомых, какая часть Солнца окажется скрыта, если заслонить его большим пальцем вытянутой руки. Большинство без колебаний ответит, что диаметр Солнца примерно равен ширине пальца. На самом деле видимый размер Солнца раза в четыре меньше, и вы можете с легкостью убедиться в этом сами. (Если у вас миниатюрные пальчики, не бойтесь, что ваш результат получится другим, нежели у приятеля с крупными ладонями: у вас ведь и рука короче, чем у него.)
Наследие Большого взрыва
Во времена аналогового телевидения, которое сейчас стремительно исчезает, уступая место своему цифровому преемнику, у некоторых моделей телевизоров (тех, что постарше) не было ни пультов дистанционного управления, ни даже кнопок переключения каналов, а только вращающаяся ручка, которую надо было крутить, настраиваясь на разные ультравысокие частоты, пока не найдешь искомый канал. Если прервешь настройку до того, как попадется какой-нибудь канал, то увидишь на экране «снег» — хаотично движущиеся белые точки. Некоторые из этих «снежинок» — следы Большого взрыва (см. главу «Вселенная — это вам не сарай»), однако до 1960-х годов об этом никто не догадывался. Да и тогда одному из самых важных научных открытий XX века чуть было не помешала кучка птичьего помета.
Когда два физика, работавшие в американской компании «Лаборатории Белла», попытались найти применение списанной рупорной антенне для приема радиосигналов, они засекли помехи, которые возникали всякий раз, когда антенну направляли в небо. Ученые надеялись при помощи этой антенны поймать радиоволны далеких звезд, но, ясное дело, прежде чем начать измерения межзвездного радиоизлучения, уровень которого очень низок, им нужно было избавиться от всех источников помех.
Эти самые ученые, Арно Пензиас и Роберт Вильсон, забрались на крышу, где располагалась антенна, и, как им казалось, выяснили, в чем проблема, — в рупоре антенны поселились голуби, а сама антенна была покрыта слоем птичьих испражнений. Помет был теплым, а поскольку при определенной температуре возникает излучение, вызывающее помехи, Пензиас и Вильсон решили, что нашли корень всех бед.
Тщательно отдраив антенну и разбросав вокруг нее пестициды, ученые вернулись к измерениям. Безусловно, помет действительно мешал, и после его уборки уровень помех немного снизился. Но помехи все-таки оставались!
Пока Пензиас и Вильсон боролись с этой маленькой технической загвоздкой, другой физик, Роберт Дикке, разрабатывал новую идею происхождения Вселенной, названную теорией Большого взрыва. Эта теория гласила, что Вселенная возникла во время сильнейшего всплеска излучения при крайне высокой температуре. В ходе последующих миллиардов лет это излучение распространялось во всех направлениях, одновременно остывая. Если теория не врала, то сейчас, спустя примерно 15 миллиардов лет после Большого взрыва, Вселенная должна была купаться в излучении, куда более прохладном, чем изначальное, и частота его должна была быть в точности как у помех, зафиксированных Пензиасом и Вильсоном — после того как они вычистили антенну.
Когда Дикке узнал о проблемах Пензиаса и Вильсона, трое ученых договорились встретиться, и стало ясно, что антенна «Лабораторий Белла» зафиксировала первое убедительное доказательство теории Большого взрыва. В 1978 году Пензиас и Вильсон (уже без Дикке) разделили между собой Нобелевскую премию по физике. Хотя Вильсон ранее придерживался конкурирующей теории происхождения нашего мира — теории стационарной Вселенной, — ему пришлось признать, что аргументация Дикке вкупе с данными, полученными им и Пензиасом, убедительно доказывают правоту теории Большого взрыва.
В этой истории имеется и другой неожиданный поворот. Оказывается, еще в 1964 году, незадолго до того, как Пензиас и Вильсон распознали источник помех, в одном из советских журналов была опубликована статья[5], предсказывавшая, что если теория Большого взрыва верна, то Вселенная должна быть наполнена остаточным микроволновым излучением, для обнаружения которого лучше всего подошла бы антенна из «Лабораторий Белла», обладающая подходящей формой и размерами. К несчастью, как выразился Пензиас в своей нобелевской лекции, «статья не попала в поле зрения других специалистов в этой области», включая, надо полагать, и его самого.
Как Генриетта раздвинула Вселенную
В ясную безлунную ночь на небе особенно хорошо заметна полоса рассеянного света, перекинувшаяся с одного края горизонта до другого. Помимо этой полосы невооруженный глаз может различить на небе звезды разной степени яркости и маленькие затуманенные участки, которые, если посмотреть в телескоп, окажутся галактиками и туманностями. Полоса света, которая именуется Млечным Путем, — это вообще-то «наша Галактика»[6] — вихрь звезд, по форме напоминающий диск, который мы видим как бы со стороны, потому что в этот вихрь входит наше Солнце. Еще сто с небольшим лет назад астрономы считали, что наша Галактика являет собой всю Вселенную и что звезды и туманности, которые мы видим на небе, — тоже части нашей Галактики. И только открытие одной женщины, Генриетты Левитт, позволило ниспровергнуть привычную картину мира, который благодаря ей превратился в огромную и постоянно расширяющуюся Вселенную, где наша Галактика — всего лишь крохотная частичка гораздо более масштабной и сложной системы, содержащей миллионы таких «млечных путей», которые еще не могла обнаружить существовавшая на тот момент технология.
Суть открытия Левитт заключалась в методе измерения расстояний до разных звезд и галактик. Это было все равно как если бы на каждом отдаленном астрономическом объекте вдруг обнаружилась табличка с надписью: «До меня 56 миллионов световых лет» (и это действительно истинное расстояние).
Если бы все звезды, в том числе наше Солнце, были одинаково яркими, мы без труда измеряли бы космические расстояния. Чем звезда тусклее, тем, получается, дальше она от нас. Воспользовавшись мощными телескопами, мы могли бы измерить яркость звезд, слишком тусклых и незаметных невооруженному взгляду, а при помощи математики — вычислить расстояние до них. В физике есть закон обратных квадратов, который гласит: если одну из двух одинаково ярких звезд отодвинуть от смотрящего в два раза дальше, чем первую, то она станет казаться в четыре раза более тусклой. Если расстояние до звезды увеличить в три раза, она будет вдевятеро менее яркой (1/22 = 1/4; 1/32 = 1/9). Таким образом, будь все звезды сами по себе одинаково яркими, нам достаточно было бы взять в качестве эталона какую-то одну звезду, расстояние до которой известно, например Солнце, а потом сравнивать ее по яркости со всеми звездами, которые нам видны.
Но звезды не одинаково яркие. Все они возникли в разное время и сейчас находятся на разных этапах эволюции, а значит, как следствие, обладают разной температурой. На раннем этапе современной астрономии ученые попытались выстроить их в некоторую последовательность, обозначив типы звезд буквами латинского алфавита: от А до S, от самых горячих до самых холодных, — но более поздние открытия спутали порядок следования, так что теперь классификация выглядит так: О, В, A, F, G, К, М, R, N, S. Об этом я упомянул не с целью загрузить вас лишней информацией, а исключительно затем, чтобы рассказать о мнемонической хитрости англоязычных астрономов. Для легкого и быстрого запоминания последовательности типов звезд в зависимости от их температур астрономы придумали фразу: «Oh, be a fine girl, kiss me right now, sweetie» («О, будь хорошей девочкой, поцелуй меня прямо сейчас, солнышко»). А в 1970-е годы некоторые американские астрономы использовали фразу: «On Bad Afternoons, Fermented Grapes Keep Mrs. Richard Nixon Smiling» («В плохие дни госпожа Ричард Никсон улыбается только благодаря сброженному винограду»).
Поскольку звезды отличаются друг от друга по яркости, то, прежде чем определить расстояние до каждой из них, нужно установить, насколько они ярки. Допустим, мы каким-то способом узнали, что звезда Альфа находится от нас в четырех световых годах. И, предположим, нам известно, что другая звезда, Бета, в абсолютных величинах в два раза тусклее Альфы. Иными словами, если бы звезды располагались от нас на одном расстоянии, то Альфа казалась бы в два раза ярче. Теперь представим, что Бета в действительности кажется в шестнадцать раз тусклее Альфы. Применив закон обратных квадратов, мы вычислим, что при одинаковой яркости Бета находилась бы от нас в четыре раза дальше Альфы. Но Бета в два раза тусклее Альфы, значит, на самом деле она ближе к нам и всего вдвое дальше, чем Альфа. Это я все к тому, что, если бы мы знали, насколько ярка та или иная звезда, мы могли бы понять, насколько она далеко.
В 1904 году Генриетта Левитт работала в обсерватории Гарвардского колледжа и получала 30 центов в час. Она трудилась в отделе фотометрии, проверяя сотни фотографических пластинок с целью оценить яркость звезд. Эта работа требовала зоркости, хорошей тренированной памяти, усидчивости и умения не раздражаться из-за монотонности процесса.
Хотя большинство звезд обладают неизменной звездной величиной — то есть яркостью, видимой с Земли, — есть также немало звезд с колеблющейся яркостью, так называемых переменных звезд. Генриетте Левитт, при ее способности запоминать увиденное с первого взгляда, достаточно было взглянуть на фотопластинку с изображением, полученным прошлой ночью, чтобы заметить, что, скажем, одна из звезд изменила яркость по сравнению со снимком, сделанным неделей раньше. Так она выявила более двух тысяч переменных звезд — то есть около половины от общего количества, известного на тот момент. Это было серьезное достижение, однако главное открытие Генриетты касалось одного из классов переменных звезд — цефеид, названных так, потому что вариабельность их светимости совпадает с вариабельностью звезды в созвездии Цефея.
Левитт заметила, что яркость этих звезд меняется с четкой периодичностью — чем выше их абсолютная звездная величина, тем длиннее цикл изменения светимости. Так, цефеида, чья яркость в 800 раз превышает яркость Солнца, проходит путь от максимума до минимума яркости и обратно за три дня (это и есть ее период), а цефеиде, которая в десять тысяч раз ярче Солнца, на это требуется тридцать дней. Итак, измерив цикл изменения светимости цефеиды, астрономы получили возможность вычислить ее абсолютную звездную величину, а исходя из этих данных, уже не составляло труда определить и расстояние.
Открытие Левитт дало ученым новые возможности оценить масштабы Вселенной. Используя мощные телескопы, астрономы открыли множество звезд со сходным типом изменения светимости в туманностях и галактиках, которые раньше считались частью Млечного Пути. Но, вычислив по циклам светимости абсолютную звездную величину этих звезд, ученые пришли к выводу, что они никак не могут находиться в пределах нашей галактики, иначе эти далекие солнца казались бы с Земли куда ярче. Тот факт, что они выглядели намного тусклее, чем могли бы, и при этом обладали большой абсолютной звездной величиной, свидетельствовал только об одном — они находились от нас намного дальше, чем звезды нашей Галактики.
Наша Галактика имеет протяженность 100 000 световых лет, то есть, чтобы пересечь ее из конца в конец лучу света понадобится 100 000 лет (см. главу «Сколько длится световой год?»). А первая галактика, расстояние до которой было измерено исходя из данных об имеющихся в ней цефеидах, находится от нас в двух с половиной миллионах световых лет. Таким образом, размеры разведанной нами Вселенной в одночасье увеличились в 25 раз!
Для человека, внесшего столь заметный вклад в развитие астрономии, Генриетта Левитт, по мнению многих, не получила того признания в научных кругах, которого заслуживала. В те времена, когда она работала в Гарварде, астрономия оставалась сугубо мужским занятием, и, поскольку Левитт не была дипломированным астрономом (а может, и из-за ее принадлежности к прекрасному полу), ей, при всей ее страстной увлеченности астрономией, так и не разрешили пользоваться профессиональным телескопом. Другая женщина-астроном, Сесилия Пейн-Гапошкина (1900–1979), говорила, что не дать Левитт использовать телескоп было «грубой ошибкой, обрекшей блестящего ученого на совершенно не подходящий для нее неквалифицированный труд и, возможно, задержавшей исследование переменных звезд на несколько десятилетий».
После смерти Левитт ее вклад в науку был наконец оценен по достоинству. Ее имя было присвоено кратеру диаметром 65 километров, расположенному на обратной стороне Луны.
Головокружение от нейтронов
Бывает, так начитаешься научных публикаций, что аж голова кругом идет. Новейшие исследования в физике — и в особенности в астрономии и космологии — имеют дело с такими вещами, о которых ученые рассуждают как о чем-то само собой разумеющемся, но человеку неподготовленному все это может показаться фантастикой.
Я сейчас не имею в виду настоящую астрономическую экзотику: черные дыры, червоточины[7], мультивселенную, раздувание Вселенной и прочее. Нет, даже куда более «обыденные» космические явления, описанные словами, для понимания которых не требуется никакого специального образования, часто поражают воображение.
Возьмем, к примеру, Крабовидную туманность. Это расплывчатое пятно, которое видно даже в плохонький телескоп, являет собой останки звезды, по данным исследователей взорвавшейся в 1054 году нашей эры. Сейчас (или, точнее, шесть тысяч лет назад — именно столько времени требуется свету, чтобы добраться из Крабовидной туманности до Земли) большая часть вещества погибшей звезды разлетается прочь от центра со скоростью около 1500 километров в секунду, а диаметр туманности достигает примерно 11 световых лет (100 000 000 000 000 километров). Но поразительно не это. Огромные размеры и расстояния я уж как-нибудь в состоянии переварить. Проблема в той штуке, которая находится в центре Крабовидной туманности.
А находится там то, что осталось от взорвавшейся звезды, — так называемая нейтронная звезда. Ее диаметр — примерно 20 километров. Это поперечник Лондона от пригородов и до пригородов или длина Манхэттена от его южной оконечности и до Бронкса.
Означенная звезда, представляющая собой сферу, «весит» примерно в два раза больше Солнца. А масса Солнца, в свою очередь, в 330 000 раз больше массы Земли. Получается, мы должны представить себе сферу размером с Лондон или Манхэттен, но по «весу» в сотни тысяч раз превосходящую нашу родную планету.
И это еще не все. Оказывается, эта небесная сфера вращается, причем довольно быстро. Только вдумайтесь: нейтронная звезда в сердце Крабовидной туманности совершает 30 полных оборотов в секунду. Если бы вы стояли, например, в Ричмонд-парке[8], а рядом вращалась поверхность нейтронной звезды, посаженной на место британской столицы, то эта поверхность неслась бы мимо вас со скоростью шесть с половиной миллионов километров в час. (Можете отнестись к этому факту как к парадоксу Ферми[9] — см. главу «Сколько в Чикаго фортепианных настройщиков?» — и поразмыслить над ним на досуге.) Это, разумеется, намного меньше скорости света (около миллиарда километров в час), но тоже весьма внушительная скорость, особенно для вращающегося объекта с такой массой.
Конечно, в действительности, если бы вас угораздило оказаться рядом с поверхностью этой нейтронной звезды и вы смогли бы выдержать исходящие от нее жар и рентгеновское излучение, вас втянуло бы силой тяжести в центр звезды, а каждую молекулу вашего тела разорвало бы на составляющие ее атомы. К счастью, вы не успели бы этого почувствовать, поскольку все произошло бы так быстро, что болевой сигнал не продвинулся бы по нервным волокнам и на миллиметр.
«Мы — звездная пыль»
Американская певица Джони Митчелл в свое время написала песню «Мы — звездная пыль», и это название, пожалуй, можно было бы счесть просто красивой метафорой, наподобие «Мы построим лестницу в рай»[10] или «Поймай упавшую звезду»[11], если бы не тот факт, что Митчелл также пела об «углероде возрастом в миллиард лет», давая понять, что знает, о чем говорит.
Химические элементы, образующие наше тело, в том числе железо в крови и кальций в составе костей, за одним-единственным исключением возникли совсем в другом теле — в бушующем теле звезды. А исключение — это водород, самый распространенный элемент во Вселенной, который запустил процесс формирования всех звезд и до сих пор подпитывает ближайшую к нам звезду — наше Солнце. Водород — простой по строению элемент; представьте себе ядро-протон, вокруг которого по орбите вращается другая частица — электрон, хотя современным ученым такая модель видится чересчур упрощенной. Водород — своего рода кирпичик, из которого строятся все остальные химические вещества, обладающие бо́льшими количествами ядерных частиц и большими количествами электронов.
В ходе событий, составляющих жизненный цикл некоторых звезд, атомы водорода под высоким давлением объединяются и образуют более тяжелые элементы, например гелий, а тот, в свою очередь, при высоких давлении и температуре образует углерод и кислород. К этой стадии изначальные атомы, состоящие из одного протона и одного электрона, объединяются в более крупные атомы: у некоторых по шесть протонов и электронов (углерод), у других — по восемь (кислород). По мере того как звезда становится все более и более плотной, сила тяжести спрессовывает эти атомы, соединяя их в единое целое и производя новые, еще более тяжелые химические элементы, и так происходит вплоть до образования железа. У атомов железа по 26 протонов и электронов, на этом процесс столкновения атомов и слияния их под давлением в атомы с более высокой атомной массой прекращается. Железо начинает накапливаться в ядре звезды, это ядро делается все тяжелее и тяжелее, пока звезда не разрушается под своим собственным весом.
На эволюцию звезды от газообразного состояния (водород) до образования «твердого» железного ядра уходит примерно 10 миллионов лет, но с гибелью звезды все результаты этой огромной работы идут насмарку менее чем за секунду. Ударная волна распространяется из центра звезды, взрывая наружные оболочки, содержащие целый ряд элементов, которые являют собой промежуточные стадии на пути от водорода к железу: само железо, кремний, кислород и углерод. При взрыве в течение нескольких дней выделяется невероятное количество света и других видов энергии; это явление можно увидеть с Земли в телескоп, оно получило название «сверхновой» — сначала наблюдаемая с Земли звезда становится во много раз ярче, а потом гаснет.
Химические элементы, образовавшиеся в недрах одной звезды, распространяются в космическом пространстве и формируют другие звезды, например наше Солнце, которое возникло из облака материи, притянутого силой тяжести к некой центральной точке. Некоторые элементы этого облака сгустились, образовав планеты, в том числе и Землю, таким образом, более тяжелые (имеется в виду все, что тяжелее водорода) элементы, которые прежде содержались в наружных оболочках звезды, обрели последнее пристанище на поверхности Земли и в ее атмосфере. А оттуда понадобился всего лишь один шажок, чтобы небольшое количество этой «звездной пыли» стало частью наших тел в следующих пропорциях: кислород (65 %), углерод (18 %), азот (3 %), кальций (1,5 %), фосфор (1 %), калий (0,35 %), сера (0,25 %), натрий (0,15 %), магний (0,05 %), а также медь, цинк, селен, молибден, фтор, хлор, йод, марганец и железо (все вместе 0,70 %).
А вот имеющийся в наших телах водород —10 % от общей массы — вряд ли произошел от взрыва далекой звезды, газообразного водорода хватает повсюду, он в большом количестве содержится в межзвездном пространстве. Так что, возможно, слова песни Джони Митчелл стоит слегка подкорректировать: «Мы на 90 % звездная пыль».
Расческа для Вселенной
Эффект Доплера (см. главу «Нечестно по отношению к Бёйс-Баллоту?») — один из главных инструментов в астрономии. Именно благодаря ему мы пришли к пониманию факта, что Вселенная расширяется: световые волны, доходящие до нас от отдельных звезд и галактик, ближе к красной части спектра, чем можно было ожидать, а происходит это из-за так называемого «красного смещения», когда источник света удаляется от наблюдателя. Красное смещение света сродни понижению частоты звуковых волн, когда источник звука удаляется от слушающего.
До недавнего времени скорости расширения Вселенной, поддающиеся измерению, были в области 30 000 километров в секунду. Когда галактика удаляется от нас на такой скорости, изменение цвета испускаемого ею света достаточно заметно и легко поддается измерению.
Методика измерения такова.
Большинству читателей наверняка известно, что свет, воспринимаемый нами как белый, на самом деле состоит из световых волн всех цветов радуги. Если пропустить свет через призму так, чтобы после преломления он падал на лист белой бумаги, вы увидите спектр цветов: от красного к желтому, зеленому и голубому. Все эти цвета обычно смешиваются в единый луч белого света, а треугольная стеклянная призма, преломляя его, раскладывает луч на цвета спектра. Если бы источник белого света очень быстро удалялся от призмы, цвета спектра изменились бы. Фиолетовый свет, который был на одной из границ спектра, превратился бы в синий, голубой сменился бы на зеленый, а зеленый свет казался бы желтым. Все цвета сместились бы к красной границе спектра. Если бы такое случилось с белым светом, исходящим, скажем, от Солнца, те световые волны, которые находились за пределами фиолетовой границы спектра (ультрафиолетовые волны), стали бы фиолетовыми, так что для невооруженного глаза ничего не изменилось бы. Но физики научились выявлять это смещение, используя так называемые эмиссионные линии.
Каждый химический элемент, если его нагреть жаром звезды, галактики или на горелке Бунзена, начнет испускать свет, в спектре которого — в определенной его части — будут различимы отчетливые яркие линии. Спектральные рисунки разных элементов хорошо узнаваемы по расстояниям между линиями и по яркости самих отдельных линий. Таким образом, когда астрономы видят, что линии какого-то конкретного элемента — к примеру, гелия, чьи волны обычно находятся в желтой части видимого спектра, — сместились в сторону красной границы спектра, они понимают, что источник света, содержащий гелий, удаляется от нас, и могут определить, как быстро он движется, измерив, насколько его волны отклонились в сторону красного.
Этот способ отлично подходит для астрономических тел, обладающих высокой скоростью, но в случае с объектами, которые движутся или изменяют скорость медленно, он не столь эффективен. А между тем в астрономии есть разделы, где незначительные изменения скорости очень важны. Один из таких подразделов астрономии исследует вероятность существования планет, вращающихся по орбитам вокруг далеких звезд. Эти планеты не видны в телескоп, но их можно выявить по влиянию на движение звезды, вокруг которой они вращаются.
Если вы полагаете, будто планета вращается вокруг центра неподвижной звезды, то ошибаетесь: и звезда, и планета вращаются вокруг точки, расположенной между центрами этих двух тел, но ближе к центру более массивного тела, то есть звезды. Больше всего это похоже на тамбурмажорский жезл с набалдашниками разной величины на концах, который крутят вокруг точки, расположенной близко к одному из концов. Это означает, что, пока планета описывает большой круг, звезда тоже движется, проявляя в своем спектре то синее, то красное смещение, в зависимости от того, приближается она к наблюдателю или удаляется от него.
Однако перемещения таких звездно-планетных систем, по сравнению с мощным красным смещением удаляющихся галактик, столь незначительны, что подобным способом можно обнаружить только самые большие планеты — такие, которые в триста раз крупнее Земли и возникновение жизни на которых крайне маловероятно из-за очень высокой силы тяжести.
Если астрономы ищут смещения спектральных линий при помощи обычного спектроскопа, их исследования зачастую не приносят желаемых плодов: изменения бывают столь незначительны, что спектроскоп их вообще не фиксирует. Но недавно группа ученых из немецкого Института астрофизики Общества Макса Планка изобрела метод наложения очень тонких калибровочных линий, напоминающих деления на металлической линейке, на спектр отдаленных астрономических объектов. Благодаря этому методу стало возможно засечь даже самое крохотное смещение, вызванное такой невысокой скоростью, как, допустим, один сантиметр в секунду.
Это новое приспособление называется «лазерный частотный гребень» и основывается на лазере, испускающем лучи разного спектрального состава под управлением атомных часов, которые измеряют время с точностью до одной миллиардной доли секунды; такие лазеры могут воспроизводить искусственные спектры с высочайшей точностью. Этот спектр служит аналогом делений на металлической линейке и позволяет устанавливать положение эмиссионной линии удаленного объекта с гораздо большей точностью, чем раньше.
С изобретением новых приборов для наблюдения и измерений астрономия стала двигаться вперед семимильными шагами. Пока лазерный частотный гребень находится в стадии разработки и почти не применяется для решения многочисленных астрономических вопросов, ожидающих ответа. Но как только его начнут использовать для обнаружения далеких планет размером с Землю, можно ожидать существенного скачка в поисках жизни во Вселенной.
Есть ли в космосе черные лебеди?
Способность науки доказать что-либо часто переоценивается. Дни сменяются днями, в очередной раз наступает рассвет, но гипотеза о том, что Земля не стоит на месте, а вращается, до сих пор не доказана, она просто получила подтверждение. Благодаря тем же самым наблюдениям можно подтвердить и совершенно противоположные предположения, например, что Солнце вращается вокруг Земли. Однако наука может найти наблюдениям и более достойное применение — они помогают опровергать те или иные гипотезы.
Скажем, гипотеза, гласящая, что все лебеди белые, подтверждается (хотя и не надежно) всякий раз, когда мы видим белого лебедя. Но одно-единственное наблюдение — когда мы своими глазами видим черного (а также красного или синего) лебедя — опровергает эту гипотезу.
Важный пример великой пользы, которую приносят науке наблюдения, дает относительно недавняя работа двух космологов: Мартина Риса и Пита Хата. Они выдвинули предположение, что Вселенная может находиться в опасном нестабильном состоянии, возникшем из-за процесса охлаждения, который сопровождает Вселенную на протяжении всех тринадцати миллиардов лет ее существования. Это состояние было названо метастабильным минимумом, поскольку выглядит Вселенная как будто бы стабильно (метастабильно), но на деле это может оказаться не так. У нее есть все шансы стать весьма нестабильной.
Для лучшего понимания представим себе две горы и ущелье между ними. Круглый валун, лежащий в самой низкой точке ущелья, стабилен, то есть в данном случае устойчив. Вы можете толкать его вверх, в сторону той или другой горы, однако, как бы вы ни старались, в конце концов он все равно скатится на свое место, на самое дно. Но если у одной из гор примерно на полпути к вершине есть уступ и площадка на нем слегка наклонена в сторону склона горы, вы можете представить себе валун, лежащий на этом уступе, и он тоже будет казаться довольно устойчивым. Если вы подтолкнете его к краю уступа, но в последний момент остановитесь, он откатится в изначальное положение. Однако если вы будете толкать с большим упорством, валун доберется до края и рухнет в ущелье. Он находился в метастабильном состоянии, которое перешло в нестабильное.
У Риса и Хата не было способа узнать, какого состояния достигла Вселенная за миллиарды лет остывания: стабильного или метастабильного. А кстати, почему это так важно?
Если Вселенная в действительности нестабильна и скорее напоминает валун на уступе горы, значит, ее можно «столкнуть» с края — в том случае, если в какой-то одной ее точке сконцентрируется достаточное количество энергии. Тогда будет запущена волна уничтожения, распространяющаяся со скоростью света, и в конце концов эта волна разрушит всю Вселенную. Физики исследуют структуру атомов, заставляя их сталкиваться на высокой скорости в громадном устройстве под названием «коллайдер», занимающем несколько квадратных километров. В результате рождаются новые типы частиц (см. главу «Что ускоряет ускоритель ядерных частиц?»). Чтобы это получилось, столкновение в одной точке пространства должно создать чрезвычайно высокую концентрации энергии.
Рис и Хат, проведя вычисления, установили, что никакой современный коллайдер не способен даже приблизиться к опасной концентрации энергии. Но чем мощнее такие устройства, тем больше информации они позволяют собрать — особенно по части того, что творилось в первые мгновения существования Вселенной. Значит, когда-нибудь, пришли к выводу Рис и Хат, ученые смогут построить коллайдер с такой высокой концентрацией энергии, что он поставит под угрозу всю Вселенную.
А дальше они рассуждали так: если мы сможем доказать, что когда-то в прошлом где-либо во Вселенной уже была достигнута подобная высочайшая концентрация энергии, то, поскольку Вселенная все еще на месте, она явно не пострадала от какой-то там волны уничтожения, а следовательно, ее состояние не метастабильно. Фактически Рис и Хат пытались найти черного лебедя — достигнутую где-то в прошлом высокую концентрацию энергии, которая не повлекла за собой никаких разрушительных последствий, — а значит, раз и навсегда отвергнуть гипотезу, что Вселенная пребывает в состоянии метастабильного минимума.
Они рассчитали, что программа тотального уничтожения оказалась бы запущена при концентрации свыше тысячи триллионов электронвольт, а затем принялись выяснять, была ли во Вселенной когда-нибудь достигнута такая концентрация. Ни один из «нормальных» источников энергии не мог подобраться к такой цифре: черные дыры, нейтронные звезды, белые карлики, пульсары — все они просто пышут энергией, но не в таких огромных концентрациях. Затем Рис и Хат вспомнили о космических лучах — высокоэнергетических частицах, которые мчатся на огромных скоростях сквозь пространство и иногда сталкиваются со звездами и планетами. Однако подобные столкновения тоже не производят того количества энергии, которого хватило бы для полного уничтожения всего сущего.
Наконец, Рис и Хат решили рассмотреть одну крайне нетривиальную ситуацию: а что, если возьмут да и столкнутся две частицы космических лучей (обе крупные и обе движутся со скоростью, близкой к скорости света)? Они выяснили, что в этом случае желаемая (или, скорее, нежелательная) концентрация энергии все-таки может быть достигнута, и если Вселенная метастабильна, то она будет уничтожена. В качестве последнего, недостающего фрагмента мозаики им предстояло определить, каковы шансы, что столь редкое и исключительное событие уже происходило на протяжении истории Вселенной? Хотя частицы космических лучей постоянно сталкиваются с медленно движущимися частицами (например, при входе в земную атмосферу), вероятность, что одна «космолучевая» частица столкнется с другой такой же, очень мала. Тем не менее Вселенная возникла не вчера, и за время ее жизни подобные столкновения вполне могли бы и произойти. В итоге Рис и Хат выяснили, что за последние 13 миллиардов лет столкновения двух частиц космических лучей, сопровождавшиеся чрезвычайно мощным всплеском энергии, происходили около 100 000 раз, то есть каждые 130 000 лет. Вывод из всего этого можно сделать только один, и весьма убедительный: на самом деле Вселенная стабильна, следовательно, нет никакой угрозы, что какая бы то ни было концентрация энергии, возникшая в ходе работы коллайдера или при каких-то иных обстоятельствах, запустит процесс немедленного уничтожения Вселенной.
Мог ли разум породить Вселенную?
Не правда ли, этот вопрос звучит довольно странно, но за ним стоит сложная цепочка рассуждений ряда ученых, пришедших к умозаключению, что Вселенная может существовать только при наличии обладающих самосознанием наблюдателей. А до тех пор, полагают некоторые, это всего лишь математическая абстракция.
Большинство дискуссий ведется вокруг так называемого антропного принципа. Его возникновение больше ста лет назад предугадал видный британский натуралист Альфред Рассел Уоллес (1823–1913): «Человек — этот венец сознательной органической жизни — мог развиться здесь, на Земле, только при наличности всей этой, чудовищно обширной материальной Вселенной, которую мы видим вокруг нас»[12].
Впоследствии ученые узнали, сколь невероятной была та цепь событий, которая привела к зарождению жизни и, наконец, к появлению человека — единственного существа, способного рассуждать о своем собственном происхождении. Исследователи указывают на тот факт, что некоторые физические характеристики Вселенной обретают смысл и ценность только при условии, что в этой самой Вселенной изначально подразумевалось возникновение разумных живых существ. Возраст Вселенной, темпы ее расширения, количество электронов и протонов и даже, казалось бы, такая неизбежная данность, как количество измерений: три пространственных и одно временное, — все говорит о том, что человек просто обязан был появиться. Однако каким бы невероятным ни казалось такое стечение обстоятельств, невероятность эта довольно шаткая. Порой она напоминает высказывания типа: «Какова вероятность того, что сегодня ровно в 11.03 зазвонит телефон и агент по продаже стеклопакетов с инициалами А. Н. попытается всучить мне стеклопакеты по цене 3500 фунтов?» Вообще-то, если вы задаете этот вопрос до описанного события и без всяких к тому предпосылок, вероятность крайне невелика. Но если вы спросите об этом постфактум, тут все просто: событие уже произошло, так что вероятность стопроцентная.
Разумеется, мы задаем вопрос о людях и Вселенной в контексте знания о том, что мы существуем (почти по Декарту), а следовательно, нет особого смысла задаваться вопросами о вероятности или невероятности этапов, которые привели к нашему появлению здесь. Если бы исходные данные были немного другими, это был бы другой мир, без нас, и решительно некому было бы беспокоиться об этом. На мой взгляд, восхищаться тем фактом, что развитие человечества как нельзя лучше вписывается в физические характеристики Вселенной, столь же бессмысленно, сколь разглагольствовать о странном совпадении, благодаря которому наш скелет как нельзя лучше вписывается под кожу и кости не торчат наружу (за исключением каких-нибудь несчастных случаев).
Однако «антрописты» (с вашего позволения назову их так) хотят непременно доискаться причины, почему только в этой и никакой иной Вселенной могла возникнуть разумная жизнь. (А некоторые убеждены, что это произошло только на Земле и больше ни на одной другой планете.) Они убеждены, что Вселенная являет собой то, что она являет, не просто так, а с какой-то целью. И хотя «антрописты» необязательно упоминают Бога, в своих различных толкованиях антропного принципа они подходят к этому все ближе и ближе. Среди многочисленных вариаций и трактовок можно выделить так называемый Слабый антропный принцип (СлАП), который гласит, что разнообразные физические характеристики Вселенной сформировались именно в том виде, какие они есть, специально чтобы породить формы жизни на основе углерода и чтобы Вселенная существовала достаточно долго, чтобы это — рождение жизни — наконец произошло.
Есть также Сильный антропный принцип (СилАП), согласно которому основная задача Вселенной — привести к возникновению и расцвету разумной жизни. Это дерзкая и небезопасная отсылка к спору о разумном начале, подогреваемому американскими креационистами[13].
Еще одна трактовка принципа, позволяющая поставить вопрос, который стал названием этой главы моей книги, известна как Антропный принцип участия (АПУ). Ее выдвинул физик Джон Уилер, считающий, что никакая Вселенная не может существовать, если в ней нет наблюдателей, обладающих самосознанием. Наблюдая за Вселенной, мы даем ей возможность существовать.
Наконец, есть Конечный антропный принцип (КАП), проистекающий из предыдущего и утверждающий, что теперь, коль скоро жизнь уже возникла, ее невозможно уничтожить, иначе Вселенная лишится всех своих наблюдателей и исчезнет.
Американский писатель Мартин Гарднер[14], глядя на эти преподносимые с максимальной серьезностью, но большей частью недоказуемые цепочки умозаключений, предложил переименовать КАП в ХЛАМ — Хронически Липовую Антропную Модель[15].
Почему ночью небо темное?
Вот еще один из тех на первый взгляд простых вопросов, которыми ученые задавались издавна и которые привели к удивительным и довольно глубоким ответам. Выросши в мире, где естественный цвет ночного неба — темный (если только мы не живем за Полярным кругом), большинство из нас наверняка ответит вопросом на вопрос: а почему бы ночному небу не быть темным? Когда очевидный источник света — Солнце — скрывается за горизонтом, стоит ли удивляться, что, подняв глаза к небу, мы видим бездонную черноту, разбавленную лишь крупинками звезд и время от времени, конечно, Луной. (Обсуждение интересной подробности, что с Луны даже при наличии Солнца небо все равно кажется черным, оставим на другой раз.)
Когда этот вопрос был задан впервые, люди верили, что Вселенная бесконечно велика и содержит бесконечное количество звезд. Если бы дело было только в этом, то, откуда бы вы ни посмотрели в ночное небо, линия вашего взгляда — прямая, проведенная от вашего глаза далеко в космос, — обязательно уткнулась бы в поверхность какой-нибудь звезды. Это все равно что пытаться оглядеться в лесу с бесконечным количеством деревьев, понатыканных в случайном порядке. Куда бы вы ни посмотрели, линия обзора неминуемо окажется заслонена древесным стволом.
Итак, если из любой точки Земли линия вашего взгляда упирается в звезду, логично полагать, что все ночное небо должно быть столь же светлым и ярким, как поверхность звезды. Вы можете возразить на это наблюдением, что «чем звезды дальше, тем меньше света они дают». Общая светимость звезды действительно уменьшается с расстоянием, но это потому, что и диск звезды, который мы видим, намного меньше, чем он есть на самом деле. Любая точка на поверхности звезды, видимой с Земли, светится очень ярко, но, поскольку диск звезды очень мал, таких «точек» в сумме видно немного, и общая яркость звезды не так уж велика. Впрочем, будь Вселенная бесконечной, вы видели бы точки звездных поверхностей повсюду, куда ни глянь, и небо по ночам сияло бы ослепительным светом.
В XIX веке, в те времена, когда научные знания еще не стали вотчиной одних только ученых и фанатов самообразования, американский поэт и прозаик Эдгар Аллан По настолько заинтересовался парадоксом ночного неба, что выдвинул свое объяснение и включил его в произведение, которое он сам называл стихотворением в прозе:
«Будь череда звезд бесконечной, театральный задник небесных декораций являл бы собой сплошное свечение, словно бы Галактика решила перед нами похвастаться — не было бы ни единой точки на всем протяжении неба, где не нашлось бы звезды. Исходя из этого, единственный способ постичь при таком положении дел существование пустот, обнаруживаемых нашими телескопами в бесчисленных направлениях, это предположить, что толщина невидимого небесного задника столь невообразима, что ни один луч света не способен пробиться к нам сквозь него»[16].
И что в этих рассуждениях не так? Да нет, вообще-то все верно. В бесконечно большой Вселенной с бесконечно большим числом случайно разбросанных в пространстве звезд ночное небо ослепительно сверкало бы. Значит, нужно разобраться, какое из исходных допущений ошибочно. А может, свет многих далеких звезд приглушен встретившейся ему на пути звездной пылью? — спросите вы. Но пыль не в состоянии полностью затмить звездный свет. В межзвездном пространстве действительно есть пыль, однако на практике она нагревается от света звезд и частично отражает его, так что общее количество света не меняется. Что касается ученых, впервые затронувших эту тему, среди них наиболее известен английский астроном Эдмунд Галлей (1656–1742), чье имя получила комета, но лавры человека, первым сформулировавшего парадокс ночного неба, достались немецкому астроному и физику Генриху Вильгельму Ольберсу (1758–1840): «Вселенная бесконечно огромна и вместе с тем бесконечно стара. Любые попытки ограничить ее во времени и пространстве слишком сковывают это Божье творение. Возможно, нам стоит пожертвовать одним или обоими этими допущениями — бесконечностью размеров и бесконечностью возраста, и тогда мы сможем разгадать тайну черноты ночного неба».
Мы, как и современная наука, придерживаемся теории, что Вселенная возникла 13–15 миллиардов лет назад в результате Большого взрыва (см. главу «Вселенная — это вам не сарай»). Образовавшись из одной-единственной точки, Вселенная расширялась, сперва очень стремительно, а потом медленнее. Она продолжает расширяться и по сей день, и «граница» ее сейчас пролегает примерно в 13–15 миллиардах световых лет от нас. Возможно, ночная темнота объясняется тем, что там, за этой границей, нет звезд, которые могли бы добавить ночному небу света, как если бы частокол деревьев, о которых я упоминал чуть раньше, кончался в двадцати километрах от нас, и нам были бы видны пробивающиеся с той стороны леса узкие полоски света.
Что ж, неплохая попытка объяснить ночную тьму, но один английский математик доказал, что даже при ограниченных размерах нашей Вселенной в ней и до предполагаемой границы вполне достаточно звезд, чтобы обеспечить нам еженощную яркую иллюминацию. Так что придется искать другое объяснение.
Идея о расширении Вселенной получила признание только к концу первой трети XX века. Попутно с этим ученые пришли еще к целому ряду выводов: например, что звезды, удаляющиеся от наблюдателя, кажутся менее яркими благодаря эффекту Доплера (см. главу «Нечестно по отношению к Бёйс-Баллоту?»). Как и в случае со сменой частоты звука, издаваемого движущимся источником, спектр света звезды изменяется в зависимости от скорости движения, а свет от удаляющейся звезды смещается в сторону красной части спектра. Глаза млекопитающих в ходе эволюции стали максимально чувствительны к диапазону цветов, образующих в совокупности белый свет, а при смещении звездного света в сторону красного некоторые из цветов спектра выпадают, поэтому свет кажется менее ярким. Так что одна из причин того, что ночное небо не такое светлое, как могло бы быть, возможно, связана с эффектом Доплера: быстро движущиеся звезды, которые вроде бы должны быть столь же яркими, что и расположенные ближе и движущиеся медленнее, на деле смотрятся значительно тусклее.
Пожалуй, одного этого объяснения хватило бы, если бы новые данные о Большом взрыве и расширении Вселенной не добавили к общей картине еще один фактор. Большой взрыв явно был очень ярким благодаря огромной энергии, которая, как мы знаем, была сосредоточена в одной точке. Так разве в ночном небе по сей день не должны быть видны следы того свечения? Как выяснилось, обнаружить световое «эхо» Большого взрыва (см. главу «Вселенная — это вам не сарай») действительно возможно, но, как и в случае со звездным светом, эффект Доплера, вызванный стремительным расширением Вселенной, изменил оттенок отсветов той давней вспышки, в результате чего световые волны оказались далеко за красной границей спектра: они теперь не видны глазом и фиксируются только как микроволновое излучение.
Обманчиво простой вопрос, сформулированный в 1823 году Генрихом Вильгельмом Ольберсом, за два прошедших столетия привел ученых, жаждавших найти ответ, к целой череде новых открытий, да таких, о которых Ольберс не мог и мечтать.
Сколько длится световой год?
По мнению многих обывателей, такой вопрос звучит вполне нормально и осмысленно. Словосочетание «световой год» похоже на единицу измерения времени. Краткая прогулка по просторам Интернета приносит следующие перлы:
«Кажется, с тех пор, как Скотт Фицджеральд воспевал гибких и податливых девушек-подростков во взрослых нарядах, прошла уйма световых лет» (журнал «Пипл»).
«…в Америке это на протяжении долгих световых лет воспринималось как нечто само собой разумеющееся» («Крисчен сайенс монитор»).
«Ему чудилось, что после поездки в Севилью прошло несколько световых лет. Вспомнив Испанию, О’Нил понял, что настало время серьезных перемен…» («Дейли мейл»).
«101 световой год тому назад» (название альбома одной рок-группы).
«Звездный свет, который мы видим, можно сказать, уже устарел, ведь достигающий Земли свет покинул испускающее его небесное тело много световых лет назад» (из письма, опубликованного в газете «Таймс»).
И — ох, неловко же в этом признаваться! — я сам когда-то пропустил в телеэфир детскую передачу, в которой ведущий сказал группе детей: «Увидимся через пару световых лет!»
В действительности же в световых годах измеряется не время, а расстояние, поэтому единственно правильный ответ на вопрос, прозвучавший в заголовке этой главки, таков: «365 дней, 6 часов, 9 минут и 9,7676 секунд, иными словами столько же, сколько и любой другой год».
Это понятие, сбивающее многих с толку, приходится использовать по той причине, что расстояния до интересующих нас объектов во Вселенной очень велики: попробовав выразить их в любых земных единицах измерения, мы получим слишком громоздкие числа. Самая крупная единица измерения расстояния, используемая на Земле, а точнее, на суше, — это миля, и, поскольку до ближайшей к нам звезды (если не считать нашего Солнца) около 24 689 700 000 000 миль (39 734 220 000 000 километров), гораздо удобнее обозначить столь большое расстояние как 4,3 световых года: 4,3 года потребуется свету, чтобы проделать путь от этой звезды до Земли. Разумеется, можно было бы сказать: «25 триллионов миль», — это выглядит не так уж и устрашающе, но как быть, если речь зайдет о более отдаленных объектах, таких, как «далекая-далекая галактика» (как тут не вспомнить «Звездные войны»?!) под названием IOK-1? Расстояние до нее в милях — 75 715 квинтиллионов, это гораздо сложнее запомнить и выговорить, чем «12,88 миллиарда световых лет».
Все познается в сравнении. Если бы мы, говоря о земных расстояниях, оперировали бы только самыми мелкими единицами длины — если бы мы, скажем, были вирусами гриппа, чьи размеры измеряются микрометрами (1/1000000 метра), — тогда нам было бы сложновато обсуждать расстояние от Лондона до Нью-Йорка. (Впрочем, тут могли бы возникнуть и другие препятствия — например, отсутствие голосовых связок.) Если бы самой крупной нашей единицей длины был микрометр, что было бы в сто раз больше нашего роста, то расстояние до Нью-Йорка в 5 585 000 000 000 микрометров, мы могли бы выразить гораздо короче —1/5 световой секунды.
Если вы до сего дня заблуждались и считали световой год единицей времени, знайте, что вы, сами того не подозревая, оказались в хорошей компании. Даже профессиональные астрономы и люди, которые живо интересуются астрономией, порой допускают ту же ошибку. Вот вам еще одна подборка цитат из Интернета, на сей раз с сайтов, дающих консультации по вопросам астрономии или содержащих астрономическую информацию:
«До чего же удивительно, что мы можем заглянуть так далеко в прошлое… Эх, если бы мы только могли пообщаться там с кем-нибудь, мы бы тогда расспросили их, что происходило на этом месте 7 миллиардов световых лет назад» (из блога).
«Предположим, вы направите “Хаббл” (телескоп) в какую-нибудь сторону и станете наблюдать свет из галактики А, которая двинулась прочь от центра Вселенной 13,7 миллиарда световых лет назад, почти сразу после Большого взрыва. Если луч света покинет галактику А прямо сейчас, он доберется до вас лишь через 46,5 миллиарда световых лет» (сайт для любителей астрономии).
«Таким образом, 12 миллиардов световых лет назад эта масса, которую мы с вами сейчас видим, двигалась намного быстрее, потому что находилась на краю Большого взрыва, конечно, при условии, что Большой взрыв произошел примерно тогда» (форум, посвященный физике).
«Свет покинул проксиму Центавра 4,3 световых года назад, поскольку свет перемещается со скоростью света, а звезда расположена от нас на расстоянии 4,3 световых года» (сайт фирмы «Sky-Watcher», производящей телескопы).
«Если наша Галактика вращается, то можно ли будет, когда она окажется по другую сторону круга, в точке, противоположной нашему нынешнему местонахождению, увидеть Землю, какой она была миллионы световых лет назад?» (вопрос в разделе «Спросите у астронома»).
Хотя последний вопрос был задан дилетантом, отвечал на него профессиональный астроном, который даже не указал собеседнику на ошибку.
Самый древний в мире ядерный реактор
Построить атомную электростанцию стоит в среднем около 1,5 миллиарда фунтов стерлингов. Посреди станции располагается ядерный реактор — тонкое и сложное устройство, снабженное системами контроля, чтобы отслеживать события, занимающие всего лишь долю секунды, и обеспечивать постоянную выработку тепла, которое приводит в действие турбины, производящие электричество. В некоторых типах реакторов исходным веществом в процессе выработки электричества служит уран. Общеизвестно (ведь именно это многие считают существенным недостатком использования атомной энергии), что атомные электростанции производят радиоактивные отходы. В этих отходах содержится непереработанный уран, обладающий весьма характерными свойствами. В общем, если ученые наткнутся на это конкретное вещество, то не ошибутся, предположив, что где-то поблизости находится ядерный реактор, созданный человеком.
Единственным исключением из этого правила стало центрально-африканское государство Габон. Здесь геологи, работавшие на урановом месторождении в местечке Окло, обнаружили в 1972 году образцы урана, обладавшие явными чертами радиоактивных отходов. Но в те времена на всем африканском континенте не было ни одной атомной электростанции. Судя по всему, в этом месте произошло что-то очень странное.
Горные породы с естественным содержанием урана включают в себя атомы урана двух типов: U238 и U235[17]. Преобладают атомы U238, а на долю U235 приходится всего 0,7 %. В ядерном реакторе атомы U235 бомбардируют ядерными частицами под названием «нейтроны». Один нейтрон, попавший в атом U235, выбивает из него еще два или три нейтрона, те бомбардируют другие атомы, из которых вылетают новые нейтроны, и так далее. При соблюдении всех условий запускается цепная реакция, в ходе которой все большее количество атомов распадается, выделяя тепло, которое перерабатывается в энергию. В числе этих необходимых условий — присутствие замедлителя нейтронов (чаще всего это обычная или тяжелая вода; последняя вместо водорода содержит его изотоп дейтерий), который действует как защитная оболочка: не дает излишкам нейтронов вылететь наружу из среды, где происходит реакция, что привело бы к остановке цепной реакции.
Отходы, образующиеся при работе ядерного реактора, содержат куда меньшую долю U235, чем изначальные 0,7 %, ведь большинство атомов было расщеплено в ходе цепной реакции. В горных породах из месторождения в Окло было найдено то же небольшое количество этого изотопа урана, как если бы на этом месте когда-то произошла цепная ядерная реакция. Большинство ученых отказывались в это верить, но, как выяснилось, американский химик японского происхождения Пол Курода (он же Кадзуо Курода, 1917–2001) еще в 1956 году высказал гипотезу о возможности при определенных обстоятельствах протекания цепной реакции с распадом урана в естественной среде. Среди упомянутых обстоятельств фигурировали более высокая доля U235, чем в большинстве ураносодержащих пород, и наличие воды в качестве замедлителя нейтронов.
Ученые, исследовавшие найденные в Окло породы, наконец пришли к заключению, что требуемые условия сложились примерно два миллиарда лет назад, когда доля урана U235 была значительно выше и доходила до 3 %. Сейчас уровень содержания этого вещества намного ниже, потому что, как и все радиоактивные элементы, уран со временем распадается на другие атомы (см. главу «Что ускоряет ускоритель ядерных частиц?»). Скорость распада урана зависит от параметра, получившего название «период полураспада», — это время, за которое данное количество того или иного радиоактивного элемента уменьшается вдвое по сравнению с первоначальной массой. Период полураспада U235 составляет 704 миллиона лет. Итак, несколько периодов полураспада назад, то есть примерно за 2 миллиарда лет до нас, в залежах горных пород содержалось намного больше U235 — а именно как раз то количество, которое вызывает устойчивую цепную реакцию. При этом поблизости была вода — естественный замедлитель, не позволявший беглым нейтронам вырываться на свободу. Вот такое стечение обстоятельств наблюдалось тогда в Окло. Более того, нынешние ученые, детально обследовав местность, установили, что ядерная активность происходила в интересном ритме: это был циклический процесс, который длился миллионы лет. Цепная реакция возникала в горных породах, окруженных водой, атомы при расщеплении выделяли тепло, вода под действием высокой температуры испарялась и лишалась свойств замедлителя, в результате нейтроны разлетались кто куда и цепная реакция прекращалась. Пар конденсировался и снова превращался в воду, та, словно одеяло, укрывала нейтроны, которые все еще выделял уран. Большая их часть теперь не улетучивалась, а оставалась в породе, расщепляя атомы урана и снова запуская цепную реакцию.
В 2004 году группа американских ученых, исследовав обломок скальной породы из Окло шириной всего несколько миллиметров, пришли к выводу, что природный реактор производил тепло примерно в течение получаса, потом «отключался» на два с половиной часа, после чего вновь начинал работать. В таком состоянии он находился в течение 150 миллионов лет, работая со средней мощностью 100 киловатт — примерно такова мощность двигателя обычного автомобиля.
Под конец этих изысканий всплыл один приятный сюрприз — приятный прежде всего для тех, кого беспокоит проблема захоронения радиоактивных отходов. Продукты распада, образовавшиеся в ходе естественной цепной реакции, не вызвали радиоактивного заражения окрестной природы, а спокойно лежали себе на месте, окруженные со всех сторон скальной породой, состоящей из гранита, песчаника и глины. За два миллиарда лет эти отходы, включая наиболее токсичный элемент плутоний, проникли в скалу не более чем на три метра. Взяв в Окло пробы пород, ученые укрепились во мнении, что отходы современных атомных электростанций можно будет точно так же держать под контролем, поместив их в подземные каменные хранилища, — именно подобным образом намереваются решать проблему отходов в будущем.
Озера-убийцы
Одной августовской ночью 1986 года в деревнях поблизости от озера Ниос, расположенного в гористой области африканского государства Камерун, во сне умерло сразу 1700 человек. Причиной их гибели стало озеро, даже при том, что некоторые несчастные жили в 25 километрах от его берегов. Однако этого расстояния оказалось недостаточно, чтобы уберечь их от огромного облака углекислого газа, который поднялся со дна озера и накрыл соседние холмы и долины, лишив кислорода все живые существа на этой территории и тем самым вызвав у них удушье.
В этой части Африки находятся три крайне необычных озера. Одно из них, Моноун, за два года до описанной трагедии привело к гибели 37 человек, но выброс газа со дна Ниоса оказался куда страшнее. Третье озеро, Киву, пока ни разу не выделяло в воздух двуокись углерода, хотя в его водах этого смертоносного газа растворено ничуть не меньше.
Опасный характер этих озер проистекает из их местоположения — все они образовались в кратерах вулканов, и на протяжении веков двуокись углерода просачивалась из жерла вулкана и скапливалась в придонных водах. В других, более мелких озерах газ в таких случаях благодаря естественному движению воды распространяется по поверхности, а потом испаряется. Но у этих трех камерунских озер стоячая вода и очень большая глубина, которая создает усиленное давление на подводные газы и не дает им подняться наружу, из-за чего возникает некое подобие сифона с газировкой. Собственно, газировка — это и есть углекислый газ, растворенный в воде. Время от времени — как правило, после грозы или схода оползня — неподвижный слой воды с растворенной в ней двуокисью углерода оказывается потревожен, и озеро с пугающей скоростью начинает выделять газ; образуется гигантский пузырь, который, добравшись до поверхности, превращается в облако. Сначала оно поднимается на несколько десятков метров над водой, а потом, будучи тяжелее воздуха, опускается до самой земли и расползается по окрестностям. Из озера Ниос в воздух было выброшено около кубического километра газа (этого хватило бы, чтобы наполнить 500 больших стадионов), а расползалось облако (скорее, разбегалось!) со скоростью 60 километров в час. Если бы по берегам озера стояли датчики, подающие сигнал тревоги, то у тех из погибших, кто жил дальше всего, оказалось бы в распоряжении около пятнадцати минут и кто-нибудь из них наверняка успел бы спастись.
Чтобы избежать повторения катастрофы, французские ученые опустили в озеро двухсотметровую полиэтиленовую трубу, которая доходит до самого дна и выводит двуокись углерода в атмосферу, не давая ей скапливаться до критической массы. Ученые из своей лаборатории в Париже следят за озером по спутниковой связи и в том случае, если, несмотря на меры предосторожности, количество газа приблизится к опасным показателям, могут открыть в трубе клапаны и стравить излишки газа.
К несчастью, детальное обследование этого странного озера выявило еще один потенциальный источник угрозы. На северном берегу водоема есть ветхая дамба, прорыв которой вызовет наводнение и выброс газа, от которого могут задохнуться до десяти тысяч человек.
Недавние новости тоже не радуют. Хотя газоотводная труба и сыграла свою роль, команда ученых, посетивших озеро Ниос в 2006 году, доложила, что в озере по-прежнему полно газа, представляющего для местного населения смертельную опасность, и он может вырваться наружу в любой момент.
Лед в бокале океана
Одним из последствий мощного глобального потепления станет подъем уровня моря по всему миру, поскольку повышение температуры растопит полярные шапки льда. Как известно, и Северный, и Южный полюса покрыты льдом, и за последние годы появились признаки уменьшения ледяного покрова, а это наводит на мысли, что процесс уже пошел. Арктическая ледяная шапка за последние тридцать лет уменьшилась на 20 %. Однако на деле проблема и вполовину не так страшна, как кажется, особенно в том, что касается изменения уровня моря. Если обе полярные шапки растают полностью, только таяние льдов Южного полюса повлияет на уровень моря.
Нет, по физическим свойствам лед на Северном полюсе ничем не отличается от своего южного собрата, и вода, в которую оба они превращаются при таянии, — тоже. Однако фундаментальное отличие заключается в том, что лежит под каждой из этих ледяных шапок. Северная шапка представляет собой огромную ледяную плиту, плавающую в воде, а южная — это огромная ледяная плита, которая покоится на суше. Чтобы разобраться, почему эта разница так важна, рассмотрим пример с айсбергом. Кусок льда, образовавшийся при замерзании воды, по плотности немного уступает исходной воде. В жидком агрегатном состоянии каждая молекула Н20 свободно крепится к трем-четырем другим молекулам. При понижении температуры вода становится льдом, теперь каждая молекула жестко сцеплена с четырьмя другими, образуя кристаллическую решетку, в которой между молекулами остается чуть больше пространства, чем в воде. Поэтому лед не тонет в воде, а плавает, ведь кусок льда менее плотен, в нем больше пространства, чем в аналогичном объеме воды. (По той же причине кусок свинца тонет в воде — он плотнее, чем аналогичный объем воды.)
Так что произойдет, если плавающая в море ледяная глыба начнет таять? Подводная часть айсберга станет растворяться, образующаяся при этом вода будет занимать меньший объем, чем занимал лед до таяния, но верхушка айсберга, растаяв, покроет разницу в объемах. Так что при таянии льда никакой лишней воды в море не прибавится. Все дрейфующие в океанских водах айсберги вместе с ледяной шапкой Северного полюса могут растаять за одну ночь, и это никак не скажется на уровне моря. (Вот вам простенький эксперимент: опустите кубики льда в стакан воды, наполненный до половины, а затем долейте воды доверху. По мере таяния льда стакан не переполнится.)
В случае же с Южным полюсом лед вовсе не плавает в море. Он неподвижно лежит на твердой земле материка Антарктиды. С началом таяния образовавшаяся вода потечет в Южный океан, окружающий сушу со всех сторон, и это повлечет за собой повышение уровня моря. Если ледяной щит Антарктиды растает целиком, уровень моря поднимется как минимум на 10 метров и вода затопит немало низменных участков суши.
Все сказанное вовсе не означает, что по поводу таяния шапки Северного полюса можно не волноваться, — процесс идет намного быстрее, чем прогнозировали ученые. К тому же таяние льдов, помимо прибывания воды, оказывает на хрупкое мировое экологическое равновесие и другое воздействие. Таяние арктической ледяной шапки хоть и не вызовет потопов, однако сократит количество отражаемого Землей солнечного света; планета вберет в себя этот свет и тепло и это приведет к повышению температуры.
Все эти соображения наверняка заставят вас добавить в свой коктейль лишний кубик льда и переключиться на просмотр очередного фильма-катастрофы.
Из праха восставшие
Прах матери, отца или какого другого любимого члена семьи — казалось бы, вещь безобидная, особенно если отвезти его куда-нибудь в горы или в любое иное живописное место, где усопшему нравилось бывать при жизни, и развеять там, устроив скромную поминальную церемонию. Однако сейчас кремируют до 70 % процентов всех умерших (во всяком случае, так обстоит дело в Великобритании), и большинство семей стремятся уважить желание покойного пребывать в виде праха не в урне на полочке в гостиной, а в каком-нибудь более приятном и спокойном месте. Поэтому живописные уголки Англии уже страдают от нарушения химического равновесия, вызванного не чем иным, как скоплением пепла, который образовался в ходе кремаций.
На самой высокой горе Великобритании, Бен-Невисе, ситуация обострилась настолько, что местные власти попросили граждан прекратить развеивать там прах. Высокое содержание в прахе кальция и фосфора влияет на химический состав грунта и ставит под угрозу высокогорные растения, которые очень чувствительны к кислотно-щелочному балансу почвы и уже оказались на грани выживания.
По иронии судьбы, убивая одни растения, пепел служит удобрением для других, которые благодаря ему расширяют свой ареал обитания. Сходного эффекта добиваются садоводы, удобряя овощи золой или костной мукой. На больших высотах пепел стимулирует рост мхов и дерна, которые ныне покрывают камни и почву, ранее вовсе лишенные растительности.
Один ученый назвал пепел пиршеством для отдельных видов растений и объявил, что на некой горе в Шотландии, за которой он наблюдал в ходе исследований, прах одного-единственного покойника за шестнадцать лет вызвал заметные и устойчивые изменения в жизни растений.
Глобальный катаклизм собственной персоной
Действие факторов риска, угрожающих окружающей среде, а именно глобального потепления, загрязнения природы и тому подобного, представляется нам столь значительным и широкомасштабным, что трудно даже вообразить, будто заметную роль в нынешнем плачевном состоянии природы мог сыграть всего один-единственный человек. Тем не менее ответственность за два нововведения, оказавших едва ли не самое губительное воздействие на окружающую среду, лежит на одном человеке, американском изобретателе, который придумал добавлять в бензин соединение свинца и ввел в обиход хладагент фреон.
Томас Миджли-младший предложил добавлять в бензин свинец, чтобы избавиться от «стука» в двигателе, — прежде топливо сгорало в двигателе внутреннего сгорания слишком быстро, что вызывало шум и повреждение мотора. Даже во времена внедрения этого изобретения было общеизвестно, что свинец ядовит, поэтому производители схитрили, назвав добавку «этил» (вместо полного наименования «тетраэтилсвинец»). За несколько лет работы над добавкой Миджли и сам пострадал от своего изобретения: у него обнаружились симптомы отравления свинцом. Однако Миджли это не остановило. Несмотря на собственный печальный опыт и смерть десяти рабочих на заводе-изготовителе (в то время как у других рабочих появились галлюцинации и симптомы психического расстройства), Миджли пытался успокоить общественность, плеская добавку себе на руки и вдыхая ее испарения из мензурки. При этом он заявлял, что может проделывать подобные экзерсисы ежедневно и без всякого вреда для здоровья, однако не похоже, чтобы это вошло у него в привычку.
Следующей медвежьей услугой, оказанной Миджли человечеству, стало изобретение хлорфторуглеродов (ХФУ) — соединений хлора, фтора и углерода — в качестве альтернативы существовавшим тогда охлаждающим жидкостям, крайне токсичным при утечках. Фреон, также известный под названием «дихлордифторметан», поначалу казался поистине чудесным соединением. Это было бесцветное, лишенное запаха, неогнеопасное, некорродирующее и на первый взгляд совершенно безвредное летучее вещество, которое спокойненько циркулировало себе в охлаждающей системе холодильника, переходя из жидкости в газ и обратно и сохраняя свежесть продуктов.
Прошло всего несколько лет, и фреон стал стандартным хладагентом, использовавшимся в большинстве домашних холодильников. Как и в случае с более вредоносными своими изобретениями, Миджли лично продемонстрировал публике низкую токсичность и исключительно благую сущность фреона, вдохнув полные легкие этого газа и выдохнув его на горящую свечу, отчего пламя сразу потухло.
Оба главных изобретения Миджли принесли производившим и распространявшим их фирмам целые состояния и на несколько десятилетий заняли лидирующие позиции на рынке. Однако настал час, когда сперва тетраэтилсвинец, а потом фреон и сходные с ним хладагенты были признаны соединениями, оказывающими катастрофическое воздействие на окружающую среду. Свинец, поступавший в атмосферу с автомобильными выхлопами, попадал в кровь и вызывал у детей неврологические заболевания; а химические реагенты из отслуживших свой срок холодильников внесли существенный вклад в образование дыры в озоновом слое Земли.
Но к тому времени, когда человечество осознало вред, нанесенный изобретениями Миджли, их автор давно уже умер. Можно сказать, что под конец жизни его настигло справедливое возмездие — причиной смерти изобретателя стало его же собственное детище. В 1940 году Миджли заболел полиомиелитом и оказался прикован к постели. Он придумал специальное приспособление, которое позволяло ему вставать, но, как всегда, Миджли не разглядел таящейся в нем опасности. 2 ноября 1944 года он запутался в тросах своего устройства и был ими задушен.