Веревка вокруг Земли и другие сюрпризы науки — страница 2 из 7

Самая важная машина, которой никогда не было

Одним из основоположников современной вычислительной техники стал британский математик Алан Тьюринг. А прославился он отчасти благодаря так называемой «машине Тьюринга», которая существовала исключительно умозрительно — в воображении ученого и его научных трудах. Тем не менее нынешние компьютеры работают во многом на базе гениальных догадок Тьюринга и небольшой группки его единомышленников, чьи главные открытия пришлись на 1930-е годы.

Тьюринг пытался найти ответ на вопрос, поставленный в 1928 году немецким математиком Давидом Гильбертом: возможно ли найти алгоритм, позволяющий в любой математической системе определять, верно ли в этой системе то или иное утверждение или нет. В итоге Тьюринг доказал, что существуют системы — и одна из них арифметика, — в которых невозможно, пользуясь единым методом, определить истинность утверждения.

В научной работе, посвященной этой проблеме, Тьюринг придумал воображаемую машину — это был отличный образец того, что ученые именуют «мысленным экспериментом». Машина состояла из бесконечной ленты, разделенной на ячейки, и головки, которая, действуя по принципу головки магнитофона, могла записывать в ячейки символы и стирать их.

В своей работе Тьюринг описывает изменения в ячейках, производимые так называемым компьютером, или вычислителем (в те времена слово «компьютер» означало человека, а не предмет):

«Вычисление обычно осуществляется путем записи неких символов на бумаге. Представим себе, что эта бумага поделена на клеточки, как тетрадка по арифметике… Поведение компьютера в любой момент времени определяется символами, которые он воспринимает, и его состоянием в данный конкретный момент»[18].

Простейший репертуар символов состоит из 0 и 1, и к этому репертуару прилагается таблица инструкций. Такая таблица может включать в себя, например, следующие правила:

Если головка находится над ячейкой, содержащей 0, то 0 стирается и на его место записывается 1, после чего лента сдвигается вправо.

Если головка находится над ячейкой с символом 1, то 1 стирается и на ее место записывается 1 (снова), после чего лента сдвигается влево.

Если головка находится над ячейкой с символом 0, то 0 стирается и на его место записывается 1, после чего лента сдвигается влево.

Если головка находится над ячейкой с символом 1, то 1 стирается и на ее место записывается 1 (снова), после чего лента сдвигается вправо.

Если головка находится над ячейкой с символом 1, то 1 стирается и на ее место записывается 1 (снова), после чего лента остается на месте.

Эти инструкции (всего лишь часть полной таблицы правил) можно коротко выразить так:

(0,1, П), (1,1, Л), (0,1, Л), (1,1, П) и (1,1, Н)

Таблица инструкций используется снова и снова, пока машина от некоего начального состояния (определенного набора символов) не перейдет к конечному состоянию. При должном применении правил начальное состояние ленты — скажем, двоичное отображение числа 27 — может прийти к конечному состоянию — 729, — нужно только воспользоваться набором инструкций для умножения чисел на самих себя.

Умозрительно изобретя «машину Тьюринга», которая способна решить некую одну задачу с помощью набора инструкций, предназначенного именно для этой задачи, ученый продемонстрировал, что можно изобрести «универсальную машину Тьюринга», способную имитировать все остальные «машины Тьюринга». Набор правил для такой машины эквивалентен программному обеспечению современных компьютеров, которое позволяет использовать их самыми различными способами.

Хотя эта «машина Тьюринга» так и не была создана в действительности, Тьюринг вовсю трудился над производством других, уже вполне реальных устройств для решения задач. Одна из важнейших задач, которую Тьюринг пытался решить и которая остается нерешенной по сей день, — это математическое выражение, названное «гипотезой Римана», оно касается распределения простых чисел среди натуральных.

В 1939 году Тьюринг получил грант на сборку машины, которая состояла из тридцати сцепленных между собой шестеренок с разными количествами зубцов, соответствующими определенным логарифмам. У каждой шестерни была своя гиря, подвешенная на том или ином расстоянии от центра, шестерни были взаимно соединены в группы и приводились в движение большим рычагом.

Биограф Тьюринга Эндрю Ходжес (р. 1949) писал:

«Летом 1939 года в комнате [Тьюринга] чаще всего можно было найти нечто вроде головоломки из шестерней, распределенных по всему полу… Алан пытался, но самым жалким образом не мог объяснить, для чего все это нужно. Если движение шестерней и было как-то связано с закономерностью распределения простых чисел, которых по мере приближения к бесконечности становится все меньше, то совершенно не ясно, как именно».

Потерпев неудачу при создании машины Римана, Тьюринг, однако, внес существенный вклад в разработку одного из самых важных в истории вычислительной техники приборов — машины для расшифровки кода «Энигма», которым Германия пользовалась в ходе Второй мировой войны. Эта работа, как принято считать, помогла закончить войну на два года раньше и принесла Тьюрингу орден Британской империи.

π = 3

Все мы слышали о числе «пи», обозначаемом на письме греческой буквой π, но немногие из нас осведомлены о его занятных свойствах.

Происхождение этого числа лишено всякой загадочности. Еще самые первые математики, включая древних египтян, индийцев, шумеров и греков, открыли, что любые окружности имеют одно и то же соотношение длины и диаметра. Будь то окружность размером с мелкую монетку или с орбиту планеты Плутон, соотношение всегда одно и то же — примерно 3,14, то есть длина окружности всегда в три с небольшим раза превышает ее диаметр.

Знание этого соотношения может пригодиться, если вы вдруг решите начертить на земле окружность определенной длины, например 10 метров, а под рукой у вас будут только колышек, веревка и кусок мела. Длина веревки должна быть чуть меньше 1/6 от длины окружности, то есть в нашем случае 1,6 метра, поскольку радиус, как известно, равен половине диаметра.

По мере совершенствования методов измерения значение числа π становилось все более точным. Древние египтяне для его выражения использовали дробь 25/8, шумеры — 256/81, а сейчас, когда ученым больше не нужно ходить с рулеткой вокруг огромных кругов и можно воспользоваться компьютерными вычислениями, значение числа π определено с точностью до 1 240 000 000 000 знаков после запятой — на вид это случайная последовательность цифр от 0 до 9. Число π начинается с 3,1415 и продолжается еще на 1 239 999 999 996 знаков. И, как и в случае с Вавилонской библиотекой из одноименного рассказа Хорхе Борхеса, это число, если продлить его до бесконечности, содержит любую комбинацию цифр, какую бы вы ни задумали. Моя дата рождения, например, начинается с цифры с порядковым номером 36 764 575, а моя фамилия, если принять латинскую А за единицу, В — за двойку и так далее, начинается с цифры под номером 82 062 313.

А теперь о странностях. Обычно числа не длятся таким вот образом. Если измерить мой рост с максимально возможной точностью, получится число 180,236 128 639 сантиметра. То есть количество знаков после запятой в нем конечно. А если бы я попытался добавить еще цифр, они все были бы нулями. Если мы переведем египетские 25/8 в десятичную дробь, то получим 3,125, и все. Вы, конечно, можете записать его как 3,125 000 000 000 плюс еще триллион нулей, но этим не добьетесь ничего, только руку перетрудите. Даже и через миллиард знаков никаких новых цифр, кроме нулей, там не появится.

Наше загадочное π принадлежит к классу иррациональных чисел. Такое название этим числам дано не потому, что они ведут себя иррационально, а лишь потому, что их нельзя представить в виде ratio[19] — обыкновенной дроби, в которой и числитель, и знаменатель являются целыми числами. Замечательное π также входит в более узкую группу среди рациональных чисел, называемую трансцендентными числами, то есть оно не удовлетворяет никакому алгебраическому уравнению с целыми коэффициентами. И хотя нам пока известно не так много представителей этой группы чисел, на самом деле их больше, чем всех знакомых нам других чисел — целых чисел, дробей и прочего.

Для людей с нематематическим складом ума все это может показаться слишком сложным и потому отпугивающим, особенно когда дело касается таких привычных явлений реального мира, как окружности. Мысль о том, что число, которое невозможно записать с абсолютной точностью, присутствует повсюду: в монетах, которыми мы расплачиваемся, в Солнце, которым любуемся, в баранке руля, которую сжимаем в руках, — никак не укладывается в голове.

Вот почему в американском штате Индиана в 1897 году один член Генеральной ассамблеи штата решил наконец покончить с этой проблемой, официально приравняв значение числа — π к чему-то более разумному, можно сказать, рациональному. Тейлор Рекорд, представитель от округа Пози, внес законопроект с целым списком значений π, куда более простых и привычных, чем иррациональное. Документ гласил: «Поскольку существовавшее до сих пор правило не действует… его следует признать несостоятельным и ведущим к ошибкам при попытках применить его на практике». Жителям Индианы предоставлялось право выбрать значение. Два самых незамысловатых были 4 и 3,2, однако на фоне стремления к упрощению довольно странно было видеть в списке квадратный корень из 2×16/7, то есть около 3,23.

Учитывая, что преобладающее количество тогдашних обитателей Среднего Запада были глубоко верующими и находились в лоне протестантской церкви, возможно, член законодательного собрания Тейлор Рекорд, дабы придать своему решению пущую убедительность, сослался на Ветхий Завет. В Третьей книге царств написано:

«И сделал литое из меди море, — от края его до края его десять локтей, — совсем круглое, вышиною в пять локтей, и снурок в тридцать локтей обнимал его кругом»

(3 Цар. 7:23).

Иными словами, Бог ясно дал понять: число π равняется трем.

Таксидерьмовая история

На рубеже XIX и XX столетий в английском городе Гастингсе жил продавец оружия и по совместительству таксидермист Джордж Бристоу. На протяжении примерно тридцати лет он многократно сообщал, будто видел на территории графства Суссекс птиц редких видов. По тогдашнему обыкновению, редакция «Справочника-определителя британских птиц» со слов Бристоу заносила данные его наблюдений в ежегодный список редких птиц, замеченных в Великобритании. От таксидермиста требовалось только представить на рассмотрение тушки или чучела убитых птиц с указанием места, где они были увидены и подстрелены.

Первым зафиксированным видом был красноголовый сорокопут в 1892 году, а последним — пегая трясогузка в 1919-м. В один из периодов, наиболее богатых случаями наблюдения редких птиц, к основному списку пернатых, встречающихся на Британских островах, добавилось 49 новых видов, из них только в окрестностях Гастингса были замечены 32 вида.

Улов просто невероятный, и тому есть три возможных объяснения. Либо Гастингс и его предместья были чем-то вроде птичьего Бермудского треугольника, только наоборот, и редкие виды птиц появлялись тут куда чаще, чем где бы то ни было на территории Британских островов; либо Бристоу был необычайно искусным и неутомимым наблюдателем; либо он докладывал о птицах, которых никогда не видел в Британии живьем и которых каким-то образом раздобывал в очень далеких краях.

К 1962 году эти птицы, известные как «редкие виды Гастингса», все еще входили в авторитетный список птиц, когда-либо встреченных на Британских островах. Однако подозрение, что отчеты Бристоу были фальшивками, высказывалось все чаще, и наконец было решено подкрепить или опровергнуть их, собрав реальные данные. В том же 1962 году двое орнитологов высказались в журнале «Британские птицы» — пожалуй, даже слишком дипломатично высказались, — что по крайней мере в случае одного «наблюдения» в Гастингсе редкого вида «мы обнаруживаем, что нас принуждают оказаться в опасной близости от грани скептицизма». Они также ссылались на «хроническое невезение, по-видимому преследующее экспертов-орнитологов: ведь им никак не удается увидеть ни одного живого представителя тех удивительных и редких видов, чьи тушки были когда-то столь грамотно и в большом количестве собраны охотниками из примерно двух десятков приходов».

Имелось немало фактов, косвенно доказывавших, что «редкие виды Гастингса» не более чем надувательство. Отчеты о замеченных птицах к концу 1920-х годов стали поступать все реже, а потом и вовсе иссякли, и, проанализировав зафиксированные случаи появления похожих птиц на остальной территории Британских островов, орнитологи выявили две вещи:

1. Сравнение списка редких птиц, замеченных в более поздние годы (то есть не из числа «редких видов Гастингса»), с зафиксированными случаями наблюдения тех же птиц в период «редких видов Гастингса» показало схожее распределение видов птиц, хотя и в больших количествах, — появилась новая удобная техника для наблюдения за птицами, а также возросло число наблюдателей.

2. Если же сравнивать случаи наблюдения редких видов, замеченных ранее, с более поздней картиной, разница получалась поразительная: многие виды, обнаруженные в период «редких видов Гастингса», впоследствии ни разу не встречались на всей территории Британских островов, не говоря уже об отдельно взятом Гастингсе.

Итак, Бристоу за время своих наблюдений сообщил о целом ряде видов, которых позднейшие наблюдатели не встречали больше ни разу, — довольно красноречивый признак того, что тут что-то нечисто.

Но окончательным аргументом против «редких видов Гастингса» стал простой математический тест под названием «хи-квадрат», используемый при любом элементарном статистическом анализе результатов научных экспериментов.

Вот как он работает. Допустим, вы взяли монету, сыграли в орлянку 100 раз и получили следующий расклад по выпавшим орлам и решкам:

ОрлыРешкиСумма
Фактически5347100
Ожидавшееся5050100

Вы спросите, как трактовать этот расклад, слегка перекошенный в сторону орлов: вышло ли это случайно или монетка была жульническая?

Тест хи-квадрат заключается в вычитании ожидаемого результата, ОР, из фактического, ФР, возведения полученной разности в квадрат (умножения ее на себя) и деления на ОР. Такая операция проделывается и с орлами, и с решками, а результаты складываются. В нашем случае хи-квадрат таков: (53–50)2/50 + (47–50)2/50 = 9/50 + 9/50 = 0,36. Существует специальная таблица хи-квадратов. Используя ее, вы можете найти там это значение и определить, укладывается ли оно в рамки нормы, то есть понять, насколько оно согласуется с результатом, который мог бы получиться при случайном подбрасывании монетки. В данном случае согласуется. Таблица показывает нам, что такой результат получается примерно в 55 случаях из ста, что вполне обычно.

Теперь допустим, к примеру, что распределение бросков было следующим: 40 орлов и 60 решек. Соответственно хи-квадрат получится: 100/50 + 100/50 = 4,0. Заглянув в таблицу, мы найдем, что вероятность такого события при использовании обычной монеты около 4 %. Не то чтобы совсем невозможно, но, согласитесь, дает почву для подозрений.

Наблюдения в Гастингсе существенно отличаются от данных в целом по стране — главным образом, за счет того, что раньше на этой территории видели гораздо больше редких видов, чем сейчас. Но если все эти свидетельства подлинны и прежняя небывалая частота объясняется наличием чрезвычайно искусных наблюдателей, или охотников, или и тех и других, то общая картина открытий в Гастингсе — количество птиц каждого вида, времена года, в которые было замечено больше птиц и так далее, — должна напоминать раскладку по другим уголкам страны, несмотря на то что количество случаев в Гастингсе выше. И напротив, если свидетельства о редких птицах фальшивы и не имеют ничего общего с теми видами, которые на самом деле бороздят небо над Гастингсом, то картинка будет абсолютно другая. Статистик, работавший в сотрудничестве с орнитологами из журнала «Британские птицы», собрал информацию по трем районам и двум периодам. Он просмотрел отчеты о трех разновидностях редких птиц (класс 1, класс 2 и класс 3), виденных в каждом из районов, а затем внес в одну строку таблицы показатели по каждой разновидности в Гастингсе, а во вторую — совокупные показатели по двум остальным районам. Вот что у него получилось:

Класс 1Класс 2Класс 3Сумма
Гастингс243208165516
Остальное125119255499

Одного взгляда на цифры достаточно, чтобы убедиться: картина странная. Видов класса 1 в Гастингсе почему-то замечено вдвое больше, чем во всей остальной Великобритании. И наоборот, видов класса 3 в Гастингсе намного меньше.

А окончательно все прояснил простой хи-квадрат. Как мы видели в примере с орлянкой, значение хи-квадрата, равное четырем, означает, что только в четырех случаях из ста такой результат мог выпасть случайным образом. Если обратиться к «редким видам Гастингса», то хи-квадратный тест выдает куда больший и, таким образом, куда менее вероятный результат — 57,40, исключая всякую возможность того, что поступившие к орнитологам отчеты были получены в ходе обычного процесса наблюдения. Итак, опасения орнитологов насчет «опасной близости от грани скептицизма» полностью подтвердились.

Джордж Бристоу брал всех на пушку — можно ведь выразиться и так — всю оставшуюся жизнь (он умер в 1947 году в возрасте 84 лет), но важно другое: как только британское орнитологическое сообщество поставило его отчеты под вопрос и перестало учитывать их в статистике, редких птиц, якобы порхавших в небе Гастингса в начале XX века, сильно поубавилось — примерно до тех показателей, которые отмечались в остальной части страны.

Так что же происходило на самом деле? Явных доказательств пока нет, однако в журнале «Британские птицы» промелькнула гипотеза, что Бристоу состоял в сговоре с моряками, которые регулярно наведывались в ближайший порт. Те по его заказу охотились на птиц в других странах, складывали тушки в самом холодном месте на корабле, а потом привозили их Бристоу. А он давал за птиц хорошую цену, изготавливал из них чучела, отправлял один экземпляр вместе с отчетом в «Справочник-определитель британских птиц», а остальные чучела сбывал коллекционерам редких птиц. Ясное дело, пернатая особь, типичная для Северной Африки, в небе над Гастингсом сразу превращается в чрезвычайно редкую птицу, таким образом Бристоу, сообщая о птицах, как якобы увиденных и подстреленных в Англии, мог впоследствии спокойно продавать их коллекционерам втридорога.

Веревка вокруг Земли

Если бы можно было опоясать всю Землю веревкой так, чтобы она проходила непосредственно по линии экватора, то насколько потребовалось бы удлинить веревку, пожелай мы приподнять ее на метр над поверхностью планеты?

Первое, что приходит в голову: чтобы приподнять веревку на всем протяжении на метр, нужно проделать кое-какие расчеты с использованием изначальной длины веревки, то есть длины окружности Земли. Но если вам скажут, что длина веревки, натянутой плотно по экватору, приблизительно равна 40 000 километрам, поможет ли вам эта информация? Конечно, так и тянет предположить, что для получения зазора на всем протяжении понадобится нарастить веревку на несколько километров. Но что, если я сообщу вам, что правильный ответ никак не связан с исходной длиной?

Поиск ответа сводится к нахождению разницы между длинами двух окружностей: окружности с диаметром как у Земли и окружности с диаметром на два метра больше, чем у Земли (по метру с каждой стороны). Назовем первую величину ОЗ, а вторую ОЗ+. Теперь осталось выяснить еще одну вещь. Длина любой окружности равна ее диаметру, умноженному на постоянное число π (см. главу «π = 3»), которое примерно составляет 3,14. Итак, можно сказать, что ОЗ = 3,14×ДЗ, а ОЗ+ = 3,14 × (ДЗ + 2), где ДЗ — диаметр Земли. Чтобы узнать дополнительную длину веревки, нужно вычесть ОЗ из ОЗ+. То есть вычесть 3,14 × ДЗ из 3,14 × (ДЗ + 2). Раскроем во втором выражении скобки и преобразуем его: 3,14 × ДЗ + 3,14 × 2. Из этой записи очевидно, что правильный ответ:

Дополнительная длина веревки = 3,14 × ДЗ + 3,14 × 2 − 3,14 × ДЗ.

Или, если переставить местами:3,14 ×ДЗ − 3,14 ×ДЗ + 3,14×2. Разумеется, эти вычисления далеки от тех, какими занимается Стивен Хокинг[20], но сделаем скидку на то, что большинству из нас не каждый день приходится жонглировать плюсами, минусами, скобками и знаками равенства. Даже из таких примитивных расчетов явно следует, что длина веревки вырастет не на сотни километров и даже не на один километр, а всего на два раза по 3,14 метра.

Поскольку реальная длина веревки в наших расчетах не фигурировала, можно сделать вывод: чтобы диаметр любого веревочного круга любого размера вырос на 1 м, надо удлинить веревку всего на 3,14 м. Возьмете ли вы веревку, натянутую вокруг основания купола лондонского собора Святого Павла (110 метров), или веревку, проходящую по орбите Юпитера (около 5 миллиардов километров), надставить ее придется на одни и те же 3,14 метра.

Моцарт. Вальс для двух игральных костей

Вы не поверите, но австрийский композитор и педагог Иоганн Гуммель и его учитель, великий Вольфганг Амадей Моцарт, сами того не зная, занимались теорией вероятности — они сочиняли музыкальные пьесы, чей окончательный вид определялся броском костей.

В 1793 году, спустя два года после смерти наставника, Гуммель издал таблицу музыкальных тактов, которую, по его словам, составил сам Моцарт с целью создать невероятно большое количество вариантов «Вальса для двух игральных костей» — причем с участием публики. Таблица состояла из 171 такта, разделенных на 16 групп по 11 тактов. Каждая из шестнадцати групп предусматривала 11 вариантов развития. Зрители должны были бросать две игральные кости и, в зависимости от выпавших чисел (от 2 до 12), составлять последовательность номеров, определявших, какой вариант каждого такта нужно играть. Скажем, если на костях последовательно выпадало 3, 8, 9, 6, 3, 4, 2, 7, 5, 8, 8,12,10, 4, 7, 6, то, вычтя из каждого числа по единице (потому что бросок двух костей никогда не даст в сумме номер 1), музыканты исполняли вальс, играя второй вариант такта 1, седьмой вариант такта 2 и далее по тому же принципу. Таким образом, каждое исполнение пьесы становилось уникальным и неповторимым. При бросках двух костей скомбинировать числа от 1 до 11 (или от 2 до 12) можно 759 499 667 966 482 способами, так что вероятность исполнить именно тот один из сотен триллионов вариант, который публика уже слышала, ничтожно мала. А на то, чтобы сыграть все возможные варианты, потребовалось бы более 500 миллионов лет.

Кстати, если вы полагаете, будто Моцарта звали просто Вольфганг Амадей, то, может быть, вы удивитесь, узнав, что это не совсем так. Когда о фантастическом таланте восьмилетнего Моцарта узнал весь мир, некий Дайне Баррингтон, эрудит и антиквар, человек строгий и требовательный, подверг мальчика серьезному экзамену в Лондоне, из которого юный гений вышел, конечно же, победителем. Баррингтон опубликовал результаты своих исследований — эта книга вышла в свет в Лондоне и была снабжена портретом мальчика с подписью: «Теофил Моцарт». Более того, найден лишь один прижизненный документ, где упоминалось бы имя Моцарта Амадей — латинизированная версия греческого Теофила. А при крещении ему дали имя Иоганн Хризостом Вольфганг Теофил, без всяких там Амадеев.

Дневник на века

В 1945 году в ежемесячном журнале «Атлантик мансли» вышла статья американского инженера и советника президента Рузвельта по науке Ванневара Буша. Буш приводил несколько идей мирного развития технологий, на которые ученым предстояло переключиться после пяти лет военных разработок, увенчавшихся созданием атомной бомбы, в котором, кстати, сам Буш принимал участие.

Одно «изобретение» являло собой особенно причудливую смесь точного пророчества и зыбкого тычка пальцем в небо. Предсказывать всегда непросто, а тем более предсказывать будущее, как говаривал Нильс Бор. На одной карикатуре конца XVIII века, изображавшей, насколько изменится жизнь к 2000 году, наиболее смелый прогноз был начертан на боку летающего грузового фургона (на весу его удерживали воздушные шары — единственный из известных тогда способов воздухоплавания): там размещалась реклама «чугунного», то есть небьющегося, стекла. Что уж там говорить, стекла в современных окнах по-прежнему бьются, но мы как-то с этим смирились. Зато пророчество Буша насчет одного принципиально нового устройства наконец начало сбываться, хотя и не совсем так, как предполагал автор идеи.

Буш предсказал появление прибора, который назвал «мемексом». «Мемекс, — писал он в статье, — это устройство, в котором человек сможет хранить все свои книги, записи и переговоры и которое будет настолько механизировано, что пользоваться им будет невероятно быстро и удобно. Это будет личное вместительное хранилище данных в дополнение к памяти».

Похоже на сочетание айпода, электронной книги и некоего цифрового записывающего устройства — довольно проницательно для идеи, родившейся более 60 лет назад. Хотя, прочитав еще немного, вы поймете, что предложенный Бушем способ достижения этой смелой цели весьма далек от реального развития ситуации.

«Он будет выглядеть как письменный стол, — продолжал Буш, — и, хотя им предположительно можно будет управлять на расстоянии, это прежде всего предмет мебели, за которым работают. На верхней панели разместятся наклонные полупрозрачные экраны, на которые можно будет проецировать информацию для удобства читающего. Прибор будет снабжен клавиатурой и комплектами кнопок и рычажков. В остальном он будет похож на обычный стол. В одном конце расположится хранилище информации. Сохранность основного ее массива будет обеспечена благодаря усовершенствованной микропленке. Лишь незначительная часть пространства внутри мемекса будет отведена под накопление информации, основное место займет механизм».

Буш описал области задач, которые сможет решать этот «стол», в том числе создание некоего подобия гиперссылок и поиск информации по запросу, — сейчас нам в этом помогает Всемирная паутина. Однако в представлении Буша задачи должны были решаться при помощи рычажков и микрофильмированных фотоснимков и текстов. А чтобы получить доступ к тысячам и тысячам страниц микрофильмов, содержащих «книги, записи и переговоры» пользователя, пришлось бы крутить специальные зубчатые колесики.

Сейчас большинство функций бушевского «мемекса» выполняется устройствами, гораздо более компактными, нежели письменный стол, и у многих из нас есть подобные устройства. Лишь один из прогнозов Буша пока не реализован; впрочем, все указывает на то, что и за ним дело не станет. Он писал о хранении и доступе к личным переговорам, однако большая часть общения, не считая электронной переписки, протекает устно, и никто пока не занялся хранением и обеспечением доступа к этой информации (естественно, за исключением спецслужб).

Но скорее всего, тот день, когда при желании все сказанное кому бы то ни было в любое время суток можно будет записать, сохранить, переработать и проанализировать при помощи портативного устройства, уже не за горами. Разумеется, чем больше информации мы накопим, тем важнее будет обеспечить к ней удобный доступ. В 2002 году ученые из университета Карнеги-Меллон сконструировали и испытали аппарат для записи каждого разговора, в котором участвует его обладатель, и дальнейшего доступа к этим данным, что стало бы хорошим подспорьем для тех, кто плохо запоминает лица или с трудом сопоставляет их с именами.

Устройство состоит из двух микрофонов и миниатюрной камеры, его закрепляют на лацкане и подсоединяют к ноутбуку, который носят за спиной. Один микрофон — направленный — улавливает голос владельца, другой охватывает более широкую область и может записывать голос второго участника беседы. (Но полностью записываются реплики только одной стороны, поскольку законы США запрещают записывать разговор, не заручившись согласием обеих сторон.) Самая интересная часть аппарата — камера. Она нужна не столько для фиксации беседы на видео, сколько для того, чтобы заполучить изображение лица собеседника.

Видео- и аудиоинформация о внешности и голосе собеседника вместе с репликами владельца записывается на ноутбук. Задача устройства, по замыслу ученых, — помочь памяти владельца при следующей встрече с этим собеседником. Компьютер запечатлевает изображение каждого нового собеседника и сравнивает его с лицами всех, с кем владелец общался прежде. Он также сравнивает пробную короткую запись голоса собеседника с голосами всех прошлых собеседников. Совокупность этих двух методов — запечатление лиц и запоминание голосов, — по мнению ученых, позволяет с очень высокой степенью достоверности установить, встречался ли новый собеседник владельцу до этого. Если да, то компьютер, восстановив и проанализировав прошлый разговор, быстро и, скорее всего, фрагментарно прокрутит его владельцу, что даст возможность «преодолеть возрастные и прочие границы способности к запоминанию и воскресит в памяти подробности, полезные для данного разговора».

Хотя с того момента, как ученые из университета Карнеги-Меллон опубликовали свой доклад, прошло немного лет, компьютерные технологии за это время существенно эволюционировали: физические размеры накопителей информации уменьшились, появились новые программы для распознавания внешности и голоса. И недалек тот день, когда (при желании) все проделанное нами за день сможет быть зафиксировано в виде изображения и звука и оставлено храниться на любой срок.

Разумеется, этот подход таит в себе некоторую опасность. Каждый, кто хоть раз терял ноутбук, мобильник или ежедневник, успел убедиться: чем больше данных о своей жизни мы держим в искусственных, внешних накопителях информации, тем меньше мы можем полагаться на собственную память.

Платон писал о подобной опасности задолго до изобретения компьютеров. В диалоге «Федр» один из его героев — Сократ — приводит слова египетского царя Тамуса, который высказывает опасения, связанные с появлением письменности: «В души научившихся им [письменам] они вселят забывчивость, так как будет лишена упражнения память: припоминать станут извне, доверяясь письму, по посторонним знакам, а не изнутри, сами собою»[21].

Правда ли, что 1 + 1 = 2?

Математики ничего не принимают на веру без доказательств. Прежде чем прийти в ходе сложных построений к тому или иному умозаключению, нужно убедиться, что каждый этап пути, начиная с самой вроде бы очевидной отправной точки, строго и тщательно обоснован. В случае с хитрым вопросом, дает ли 1 + 1 в сумме 2, нужно для начала разобраться, что такое 1, потом перейти к рассмотрению, что такое 2, и, наконец, установить, что сумма 1 и 1 идентична тому, что вы понимаете под числом 2.

Поводом к этим рассуждениям послужил важный и внушительный трехтомный труд Альфреда Норта Уайтхеда и Бертрана Рассела «Principia Mathematica» (1910–1913)[22], в котором на доказательство того, что один плюс один равно двум, отведено не менее половины страницы. («Полстраницы» — это еще очень консервативная оценка, один математик писал: «Книга Уайтхеда и Рассела “Principia Mathematica” известна тем, что на протяжении тысячи страниц доказывает, что 1 + 1 = 2».)

Рассел, которому часто возражали, что, мол, в доказательстве элементарных арифметических равенств нет никакой нужды, писал: «“Ничто не заставит меня усомниться, что 2 и 2 в сумме дают 4”, — скажете вы. И будете правы практически всегда, за исключением крайних случаев — ведь только в крайнем случае вы сомневаетесь, что вот это конкретное животное — собака, а вот эта конкретная длина — менее метра. Два — это не просто цифра, а количество, и заявление “2 и 2 будет 4” лишено смысла, если не применяется на практике. Две собаки и еще две собаки — всего несомненно четыре собаки, но бывает так, что вы не уверены, собаки ли две из них. “Ну, это в любом случае четыре животных”, — можете сказать вы. Однако существуют микроорганизмы, о которых нельзя с определенностью сказать, принадлежат ли они к царству животных или растений. “Ладно, четыре живых существа”, — скажете вы. Но опять же, иногда не так-то просто разобраться, идет ли речь о живых или неживых организмах. В итоге вы будете вынуждены сказать: “Две сущности и еще две сущности — всего четыре сущности”. Тогда растолкуйте мне, что вы подразумеваете под “сущностью”, и мы закончим этот спор».

Доказывая, что 1 + 1 = 2, основное место в своих рассуждениях Рассел и Уайтхед отводят попыткам дать определение понятию «сущность».



(Да и это доказательство применимо, только если «ввести определение, что такое арифметическое действие сложения», а это уже отдельный разговор.)

Один математик попытался переформулировать то, что пытались доказать Рассел и Уайтхед, воспользовавшись не символами, а словами: «Множества аир, каждое из которых состоит всего из одного элемента, считаются непересекающимися (то есть не имеющими общих элементов), если и только если их объединение дает ровно два элемента».

В таком виде доказательство выглядит несколько более доступным, хотя требует некоторых дополнений. Теория множеств как особый раздел математики возникла в конце XIX столетия. Эта теория базируется на понятии «множества» как совокупности предметов, рассматривает правила объединения предметов в множества и анализирует отношения между множествами. Например, выражение *11·54 (см. выше на рисунке) относится к высказыванию, помещенному в другом месте книги и гласящему: «Можно взять утверждение о том, что существуют две вещи, и разделить его на два утверждения — каждое о существовании одной из вещей». Простые числа и то, как мы ими оперируем в быту, — всего лишь слабая тень величественного здания математики, возведенного математиками-философами наподобие Рассела и Уайтхеда.

Однако чтобы понять, почему в математике важна точность, особых знаний не требуется. Иногда привычный нам способ смотреть на вещи может завести в тупик (даже на уровне школьного курса математики). Вот вам, к примеру, доказательство, что 3 = 4.

Допустим:

а + b = с

Это выражение также можно записать следующим способом:

4а − 3а + 4b − 3b = 4с − Зс

(Потому что 4а − 3а — это просто «а», 4b − 3b — просто «b», и так далее.)

Преобразуем получившееся равенство:

4а + 4b − 4с = 3а + 3b − Зс

(Переносить элементы из одной части равенства в другую разрешается, если при этом вы не забываете сменить знак на противоположный, то есть с минуса на плюс и наоборот. Так, например, 4х − 3 = 0 можно иначе выразить как 4х = 3, переместив -3 в другую часть равенства и сменив знак на плюс. Это то же самое, что добавить одно и то же число, +3, к обеим частям равенства. Если добавить к обеим частям равенства одинаковое число, равенство сохраняется.)

Теперь преобразуем пример следующим образом, то есть вынесем общий множитель за скобки:

4 (а + b − с) = 3 (а + b − с)

Разделим обе части на (а + b − с) и придем к выводу, что 4 = 3.

В основе этого ложного умозаключения лежит ошибка, которую может совершить каждый, кто не очень чуток к законам арифметики. Столкнувшись с подобной головоломкой, многие из нас предпочитают руководствоваться здравым смыслом, а не блестящими образцами доказательств, порожденных научной мыслью. Мы уподобляемся госпоже Ла Туш, даме, жившей в Викторианскую эпоху и известной лишь тем, что однажды она изрекла: «Ненавижу сложение. Нет большего заблуждения, чем называть арифметику точной наукой. Сплошные пермутации и аберрации, различимые лишь для таких благородных умов, как мой; неприметные вариации, которых простой бухгалтер и не увидит; скрытые законы чисел, которые требуют недюжинных умственных способностей, вроде моих. К примеру, если вы сложите слагаемые, расположенные столбиком, снизу вверх, а потом сверху вниз, — результат всегда получится разный»[23].

А все началось с обеда…

Математика имеет каверзное свойство очень быстро все усложнять и запутывать. Казалось бы, начали вы разбирать простую и всем понятную задачку, и вот — оглянуться не успели, как все вышло из-под контроля, а у вас от напряжения мозг свело.

Рассмотрим одну из таких задачек. На обеде, куда приглашены шестеро гостей, либо трое из них уже знакомы друг с другом, либо трое совершенно друг друга не знают. Докажите это.

Ситуация вполне правдоподобная, но, сколько ни думай, доказательство все время ускользает. В условии не говорится, что собравшиеся делятся на две группы: друзья и незнакомцы. Также нигде не сказано, что они все не могут быть друзьями или чужаками. Вроде бы очевидно: если среди собравшихся есть двое друзей, то остальные четверо должны быть чужаками, но это тоже неверно. Двое из этих самых «чужаков» могут быть знакомы между собой, но не знать ни одного из «друзей».

А вот математик враз покончит со всей этой неразберихой. Он возьмет карандаш, а лучше два карандаша, красный и синий, или даже три — красный, синий и черный, и нарисует круг из шести черных точек, каждая из которых обозначает гостя. Затем он соединит красными линиями все пары людей, которые знают друг друга, и синими линиями — пары незнакомцев. В этом узоре из пятнадцати линий обязательно окажется либо красный, либо синий треугольник: трое людей, знакомых друг с другом, либо трое, которые друг друга не знают.

Конечно, рисунок не доказывает изначальное высказывание, зато он переводит неясную ситуацию с людьми в четкое математическое выражение. Задача теперь рассматривает точки, соединенные линиями, то есть схему, а не людей и их взаимоотношения.

Область математики, имеющая дело с такими задачами, называется теорией Рамсея — в честь гениального кембриджского математика Фрэнка Пламптона Рамсея (1903–1930), умершего в 26-летнем возрасте, но успевшего внести существенный вклад в математику, экономику и философию. Задачка с обедом — одна из простейших в этой области, графы к более сложным задачам содержат больше точек, соединенных большим количеством линий. Граф, в котором каждая точка соединена со всеми остальными точками прямыми линиями, называется «полный граф». Граф, находящийся внутри этого множества линий, например красный или синий треугольник из вышеописанного примера, носит название «подграфа». Задачи в теории Рамсея обычно формулируются в виде вопросов типа: каково должно быть минимальное количество точек, чтобы образованный ими полный граф, случайным образом нарисованный красным или синим карандашами, содержал либо красный треугольник, либо синий четырехугольник?

Такие задачи на удивление трудно поддаются решению. Если в задачке про обед изменить условие и вместо трех сделать пятерых друзей или пятерых незнакомцев, то решить ее станет невозможно. Ответ можно будет выразить как R (5,5) — минимальное число гостей, необходимое, чтобы среди них оказалось либо пятеро друзей, либо пятеро человек, незнакомых друг с другом, но что это за число — никто не знает. Максимально близко к ответу ученые подошли, когда определили, что это R (5,5) находится где-то между 43 и 49. Венгерский математик Пал Эрдёш (1913–1996) однажды написал: «Представим себе, что некая инопланетная армия, куда более могущественная, чем наша, прилетит на Землю и потребует сообщить им точное значение R (5,5), а в противном случае пригрозит уничтожить нашу планету. Чтобы найти это значение, нам потребуется привлечь все имеющиеся компьютеры и математиков. А случись инопланетянам, допустим, потребовать значение R (6,6) — проще будет сразу попытаться уничтожить пришельцев».

Хотя считается, что математиков во всем интересует точность, иногда они согласны и на меньшее. Знать, что значение R (5,5) лежит между 43 и 39, почти так же хорошо, как, скажем, установить, что оно равняется 46. (Если вдруг впоследствии окажется, что это правильный ответ, обязательно потребую признать себя автором великого открытия!) Но в одной конкретной рамсеевской задаче эта терпимость к неточностям приводит к смехотворным результатам.

Наряду с подграфами, которые содержатся в полных графах, нарисованных на плоскости (как в вышеописанных примерах), теория Рамсея может задаваться вопросами касательно подграфов, находящихся в трехмерных полных графах. Например, нарисуйте восемь точек на плоскостях близ угла куба и соедините их все между собой — вы получите множество линий, среди которых будут попадаться разнообразные более простые фигуры. Теперь можно задавать вопросы касательно отдельных подграфов в этом полном графе, включая те, что лежат на плоскости. Все треугольники, разумеется, окажутся на плоскости, но подграфы из четырех и более точек — необязательно.

Для математиков, занимающихся теорией Рамсея, двух- и трехмерные фигуры — детский сад. Рамсеевская задача с самым неточным в мире ответом имеет дело с полными графами более высоких измерений. Обрисую вопрос в общих чертах, даже не пытаясь объяснить его. (Вам нужно только знать, что гиперкуб — это существующий в многомерном пространстве эквивалент двухмерного квадрата или трехмерного куба.) Итак, задача: каково минимальное количество измерений гиперкуба, чтобы получился полный граф с четырьмя точками, лежащими в одной плоскости, — при условии, что все линии, соединяющие все пары углов, двухцветные?

Еще никому не удалось ответить на этот вопрос, однако американский математик Рональд Льюис Грэм (р. 1935) нашел верхнюю границу ответа. Как 49 для R (5,5), верхняя граница — это число, для которого вы можете доказать, что оно больше правильного ответа либо равно ему.

Грэмовская верхняя граница являет собой столь огромное число, что для его записи потребовалась бы особая система счисления. И запись даже в такой системе счисления оказалась бы слишком длинной, чтобы включать ее в книгу. Достаточно лишь сказать следующее: число это столь огромно, что, если бы вся материя во Вселенной превратилась в перья и чернила, ее все равно не хватило бы, чтобы записать полученное значение в десятичной системе счисления.

И вот что самое забавное во всей этой истории: как было недавно подсчитано, правильный ответ может оказаться совсем не таким уж внушительным. Например, он вполне может равняться 11.

«Крибле, крабле, гугл!», или Как работают поисковые системы Интернета

Зачастую, пользуясь компьютерами, мы не задумываемся о принципах их работы, так же как, крутя баранку, предпочитаем не вникать в процессы, происходящие под капотом. На такие показатели, как скорость обработки информации или размеры памяти, мы если и обращаем внимание, то лишь при покупке нового компьютера, но редко отдаем себе отчет, какого уровня развития достигли технологии, ставшие столь привычной частью современного мира.

Лучшую иллюстрацию тех небывалых свершений, на которые способны компьютеры, я вижу всякий раз, как набираю в поисковой системе «Гугл» очередное слово или фразу. Например, напечатав по-английски слово «type» («печатать, печать, шрифт»), я всего за 0,16 секунды (это время отображается на экране) получаю первую страницу списка из приблизительно 2 780 000 000 страниц интернет-сайтов, где встречается это слово. Информация о почти трех миллиардах страниц найдена менее чем за пятую долю секунды. Если вы наберете «movable type» («шрифт из подвижных литер»), всего через 0,2 секунды вам сообщат, что существует около 15 100 000 страниц, содержащих это словосочетание. А если набрать «the phrase “movable type”» («словосочетание “шрифт из подвижных литер”»), через 0,08 секунды придет ответ, что страниц с этой фразой найдено ровно восемь. Точнее, найдено восемь разных страниц, поскольку «Гугл» указывает, что если учитывать копии этих восьми страниц, то общее их число достигнет сорока.

Как же это происходит? Неужели где-то стоит компьютер, который по моему запросу считывает все содержимое Интернета и за долю секунды выбирает из него нужные мне страницы?

Вообще-то, нет. «Гугл» действует гораздо умнее, хотя и не менее поразительно. Он постоянно, по мере создания новых интернет-сайтов, собирает их и добавляет в свою базу данных. Всякий раз, запрашивая ту или иную страницу, он создает список всех слов на этой странице и добавляет эти слова в алфавитный указатель, присвоив каждому слову уникальный адрес, в котором помечена страница, где находится слово. То есть, проще говоря, слово «type» в этом указателе закреплено за 2 780 000 000 или около того страниц. Список этих страниц существовал еще до того, как вы вбили запрос в строку поисковика, так что 0,16 секунды — это время, которое требуется компьютеру, чтобы сообщить вам то, что он и так уже «знал». Выше в этом алфавитном указателе будет и слово «movable» с примерно 25 миллионами ссылок на страницы. Если ввести в поисковик слова «movable» и «type» отдельно друг от друга, то есть без общих кавычек, «Гугл» сравнит два отдельных списка (2 780 000 000 и 25 000 000 адресов страниц) и составит новый список, где будут только страницы, присутствующие в обоих списках, то есть лишь те страницы, на которых содержатся оба слова. Но вот, скажем, я решил набрать слова «movable type» в кавычках, означающих, что мне нужны только те страницы, где эти два слова встречаются вместе, причем «type» следует сразу за «movable». Здесь начинает работать другой тип информации, собранной при составлении указателя. Помимо того факта, что слово «movable» содержится, скажем, в документе 12, указатель также знает, на какой позиции в этом документе находится искомое слово, — допустим, на позиции 31. Теперь вообразите себе, что в указателе содержится серия строк вида (Д12,31), соответствующих слову «movable» и содержащих номер документа и позицию слова. Строки, относящиеся к слову «type», тоже находятся в указателе и имеют несколько иной вид — допустим, (Д 12,32). Сравнивая строки в списках, «Гугл» определяет, что словосочетание «movable type» встречается в документе Д12, где искомые слова находятся на позициях 31 и 32, и включает адрес документа Д12 в список найденных по запросу страниц.

Люди с избытком свободного времени придумали целую игру с использованием поисковой системы «Гугл» — «гугл-вэкинг»[24]. Цель игры — найти комбинацию из двух слов, которая встречается в громадном архиве «Гугла» всего на одной странице. Найдя такую комбинацию, гугл-вэкеры сообщают о своем открытии на специальном гугл-вэкерском сайте. «Но в таком случае эта комбинация слов сразу перестанет быть уникальной, — возразите вы. — Ведь теперь она встречается уже на двух сайтах — изначальном и гугл-вэкерском». Однако «Гугл» милостиво исключил сайт гугл-вэкеров из своего поискового процесса, так что парадокса удалось избежать.

Моя бесконечность больше твоей!

Многим из нас не так-то просто свыкнуться с понятием бесконечности и особенно с мыслью о том, что бесконечности бывают разных размеров. Но факт остается фактом: математики имеют дело с бесконечностями нескольких размеров, каждая из которых «бесконечно» больше, чем предыдущая. Многим «бесконечность» представляется в виде числа, к которому стремишься, когда считаешь от единицы и дальше, — и так вечно. В таком ракурсе идея о существовании чисел, превышающих эту бесконечность, кажется абсурдной (разве что считать придется больше, чем вечно). Пытаясь продемонстрировать, что такие числа все-таки есть, математики использовали так называемую биекцию, то есть взаимно-однозначное соответствие.

Предположим, вы выстроили все числа в ряд (1,2,3…) и так до «бесконечности» (в дальнейшем я не буду пользоваться кавычками, но имейте в виду: даже если из моих слов покажется, что бесконечность являет собой некое конкретное число, на самом деле это не так). Если бы у вас был другой ряд чисел, скажем дробей, и вы бы могли соотнести эти два ряда так, чтобы каждому числу соответствовала парная ему дробь, а у каждой дроби была пара в виде целого числа, и так до бесконечности, то можно было бы сказать, что оба ряда содержат одинаковое количество чисел, следовательно, их бесконечности равны.

И напротив, если бы у вас был ряд чисел, которые нельзя попарно соотнести с целыми числами так, чтобы не осталось неохваченных, лишенных пары чисел, вы могли бы сказать, что бесконечность данного ряда чисел больше бесконечности целых чисел.

Рассмотрим для начала дроби. На первый взгляд не похоже, чтобы дробей существовало столько же, сколько целых чисел, а не больше. Ведь между каждыми двумя соседними целыми числами — скажем, 1 и 2 — окажется куча дробей: 3/2, 4/3, 6/5 и т. п. Но если можно расставить все дроби в единственно возможном порядке, создав из них бесконечно долгую последовательность, то что мешает, к примеру, поставить целое число 817 в пару к дроби с 817-м порядковым номером в списке дробей? Итак, у каждой дроби окажется единственно возможное парное ей целое число, и наоборот. (Причем целые числа окажутся и в списке дробей, ведь 4 можно выразить как 4/1.)

Теперь о том, как выстроить этот список. Сложите числитель и знаменатель каждой дроби и расположите их в порядке возрастания результата сложения, который мы обозначим как 5. (Если у дроби в числителе отрицательное число, просто не обращайте на знак «минус» внимания.) Итак, у дроби 1/2 s равняется 3; у 1/3 s равен 4; у 11/17 — 28 и так далее. У некоторых дробей будут одинаковые значения s, но поскольку наша единственная цель — выстроить длинную упорядоченную последовательность, мы можем ввести какое-нибудь правило, позволяющее однозначно определить, какая дробь должна стоять первой. Правило может быть таким: если несколько дробей дают одно и то же значение в, мы будем располагать их в порядке возрастания знаменателя. Так, у семи дробей: −4/1,1/4,2/3,3/2,4/1,-3/2,-2/3 — s равняется 5. Расположим их в порядке возрастания знаменателя: 4/1, -4/1, 3/2, -3/2, 2/3, -2/3, 1/4. А теперь пронумеруем каждый элемент этого длинного списка дробей так, чтобы каждая дробь попарно соотносилась с одним из ряда целых чисел, и так до бесконечности.

Итак, каждая дробь будет представлена в списке только один раз, и ей будет соответствовать целое число, равное номеру этой дроби в списке. Ни одна дробь не останется неохваченной, и ни одно целое число не окажется без соотнесенной с ним дроби, так что в обоих рядах будет одинаковое количество чисел.

Отлично! Так, может быть, признаем, что все бесконечные множества предметов имеют равное количество составляющих их элементов, даже если кажется, что это маловероятно, как в случае с дробями? Но как тогда могут возникнуть бесконечно большие множества предметов, которые больше, чем бесконечность порядковых номеров?

Немецкий математик Георг Кантор (1845–1918) обнаружил два ряда чисел, которые нельзя взаимно-одназначно соотнести друг с другом, как мы только что проделали с порядковыми номерами и дробями. Он оттолкнулся от посылки, что соотнести их можно, и нашел противоречие. Помните? — если вы придерживаетесь гипотезы, будто все лебеди белые, достаточно найти одного черного, и вся гипотеза пойдет насмарку (см. главу «Есть ли в космосе черные лебеди?»).

В одном из рядов чисел, рассматривавшихся Кантором, были натуральные, или целые, числа — такие же, как использованные нами. Другой совокупностью были так называемые вещественные (или действительные) числа. Вещественные числа эквивалентны точкам на линии от 0 до бесконечности, таким образом, их множество включает в себя целые числа и дроби, но также оно включает и иррациональные числа, которые не могут быть выражены в виде дробей с целыми числителями и знаменателями (см. главу «π = 3»), а могут выражаться лишь в виде десятичной дроби с длинным рядом знаков после запятой. Простые дроби тоже можно перевести в десятичные, но у них через несколько знаков после запятой начнутся сплошные нули. Так, 5/8 — это то же самое, что 0,62 500 000 000, тогда как в иррациональном числе 17,38279462900962835687648… знаки после запятой можно перечислять вечно.

Чтобы доказать, что вещественные числа нельзя взаимно-однозначно соотнести с целыми числами, Кантор продемонстрировал: как бы вы ни пытались выстроить вещественные числа в организованную последовательность, как мы проделывали с дробями, всегда есть шанс, что всплывет какое-нибудь вещественное число, которого в этой последовательности нет.

И вот как он это обосновал. Допустим, у нас есть совокупность всех вещественных чисел (которых бесконечное количество), и мы ввели некое правило, позволяющее выстроить их по порядку. Полученная нами в результате последовательность может выглядеть, например, так:

Целое числоВещественное число
17,2728654901088…
22,0709903829756…
318,696243576675…
40,8717454638892…
53,8342020203020…
60,6766682920082…
73,1416269873562…

Какова бы ни была закономерность расположения чисел, она не очевидна, но речь сейчас не об этом. До тех пор, пока мы пребываем в уверенности, что можем соотнести любое вещественное число с привычным и милым нашему сердцу миром целых чисел, мы неизменно будем получать такую вот странноватую последовательность.

Итак, вы можете сунуть мне под нос этот список и похвастаться использованным правилом расположения чисел, благодаря которому любое взятое с потолка вещественное число вплоть до бесконечности обязательно где-нибудь в этом списке да найдется, а значит, бесконечность вещественных чисел равна бесконечности соответствующих им порядковых номеров, то есть целых чисел. Но как бы ни выглядел ваш список, я могу придумать вещественное число, которого там не будет.

Для простоты сосредоточимся только на знаках после запятой.

Я могу составить число, чей первый знак после запятой будет отличаться от первого знака в первом числе списка. Второй знак в моем числе не совпадает со вторым знаком второго числа. Третий знак моего числа будет отличаться от третьего знака после запятой в третьем числе списка, и так далее.

Взяв в качестве образца приведенный выше список, я могу составить число 0,3942501… Многоточие означает, что количество знаков после запятой бесконечно, как и у большинства вещественных чисел. А теперь я могу доказать, что, каким бы правилом при расположении чисел вы ни руководствовались, моего числа в вашем списке нет. Его не может там быть из-за самого метода, каким я его создавал, ведь от каждого вещественного числа в вашем списке оно отличается хотя бы на одну цифру. Это и есть тот «черный лебедь», доказывающий, что изначальное допущение, будто вы установили взаимно-однозначное соответствие между всеми вещественными и всеми целыми числами, неверно. Эти две бесконечности — бесконечность вещественных чисел и бесконечность целых чисел — существенно разнятся, на этой разнице Кантор основал целое новое направление теории чисел. Теперь, быть может, вас не удивит, что математики полагают, будто «размеров» бесконечностей не два, а гораздо больше. В действительности их бесконечно много, и, в довершение картины, данная бесконечность больше любой из бесконечностей, входящих в это количество.

Ползай с пользой!

За последние годы я оказывал компьютерную поддержку сразу нескольким научным проектам. Среди них были поиски внеземного разума, погоня за очень большими простыми числами и тестирование алгоритмов для построения трехмерного изображения белковых молекул исходя из их линейной формулы.

Причина, по которой меня попросили помочь в столь широком спектре важных научных исследований, к сожалению, почти не связана с присущими мне способностями и талантами и объясняется главным образом наличием у меня персонального компьютера.

Ученые, которые работали над этими проектами и десятками им подобных, привлекали скрытые ресурсы, таящиеся в недостаточном использовании домашними компьютерами вычислительного времени, которое в общей сложности составляет миллионы часов и позволяет добавить мощности собственным компьютерам ученых, когда требуется производить сложнейшие математические расчеты. Большую часть времени, даже когда мы работаем с домашними компьютерами, они загружены не на полную катушку. Один из первых проектов по использованию сэкономленного вычислительного времени назывался SETI — эта аббревиатура расшифровывается как Поиск Внеземного Разума — и требовал переработки огромных массивов информации, которая ежедневно поступает с устройства, закрепленного на гигантском радиотелескопе на острове Пуэрто-Рико. Поступающие данные являют собой разновидность «белого шума» — это радиоволны, хаотично испускаемые звездами и галактиками. Однако ученые надеются, что однажды среди этого шума попадется сигнал от представителей внеземной цивилизации, который будет выделяться некоторой регулярностью на фоне общей хаотичности. Скачав и установив простенькую программу, пользователи домашних компьютеров могут подключиться к анализу этой информации, которая поступает к каждому участнику программы регулярными порциями. Присоединившись к этому проекту, вы можете наблюдать, как программа на вашем компьютере анализирует полученные данные, и мечтать о том мгновении, когда ваш компьютер заметит регулярно поступающий сигнал и поставит весь мир на уши, отправив сообщение об этом в SETI.

Это была хорошая задумка, которую тут же подхватили другие ученые: им тоже требовалась обработка больших массивов данных, которая не требует сложнейшего программного обеспечения — достаточно обычного домашнего компьютера.

Такие проекты существуют по сей день, для участия в них вам всего лишь нужно подать заявку и скачать ту или иную специальную программу. Но я наткнулся на еще один хитроумный способ использования вашего и моего компьютеров, который даже не требует от нас согласия и контроля. Блуждая по Интернету, вы наверняка сталкивались с тем, что некоторые сайты просят вас распознать и ввести код из искаженных и не сразу узнаваемых цифр или букв. Это делается для того, чтобы удостовериться: сайтом пытается воспользоваться человек, а не компьютерная программа, ищущая, как бы обдурить он-лайновые сервисы — например, скупить билеты на концерт для перепродажи и взвинтить цены. Эти слова или буквенно-цифровые коды называются CAPTCHA [25].

Новые горизонты использования CAPTCHA открылись в ходе проектов по оцифровке книг, чтобы сделать их текст доступным в сети Интернет. Раньше процесс этот был весьма трудоемким и требовал, чтобы люди считывали текст и набирали его на компьютере. Позднее возникли менее затратные методы с использованием OCR (Optical Character Recognition) — программ для оптического распознавания текста, которые на высокой скорости считывают книгу и преобразуют ее в электронный документ. Однако чем старее книга, тем сложнее компьютеру распознать текст. Викторианский роман, отпечатанный мелким шрифтом на пожелтевшей и крошащейся бумаге, — твердый орешек для компьютера, в то время как у человека при чтении такой книги никаких проблем не возникает.

И тут снова на арене появляется CAPTCHA. Чтобы получить доступ к интернет-сервисам, люди вводят подобные коды более ста миллионов раз в сутки. Ученые-компьютерщики из питтсбургского университета Карнеги-Меллон показали, как можно использовать этот пустой труд, убедив владельцев некоторых сайтов использовать в качестве CAPTCHA слова, которые компьютеру не удалось распознать при оцифровке старых книг. Так, подстраховавшись, чтобы быть уверенными в правильном распознавании и использовав для этого на разных сайтах одно и то же слово, они создали систему для обработки неразборчивых слов, которые прежде требовали распознавания специалистом и введения в текст в ручном режиме. Эта система оптического распознавания текста, получившая название reCAPTCHA, во время испытаний показала точность 99,1 % (для сравнения: точность стандартной OCR — 83,5 %). За год работы этого проекта пользователи Интернета невольно расшифровали почти 500 миллионов слов, что равноценно количеству не поддающихся расшифровке слов из 17600 книг.

Так что, в следующий раз, блуждая, лазая, ползая по Интернету и столкнувшись там с кодом в виде деформированного и трудно различимого слова, изо всех сил постарайтесь разобрать его, ведь, возможно, вы не просто покупаете билет на выступление любимой группы, но еще и пополняете хранилище сокровищ мировой литературы в Интернете.

Завернутые на Моцарте

В 1890 году жителям Зальцбурга повезло — у них появилось новое лакомство, «Mozartkugeln» (в переводе на русский «шарики Моцарт»): сердцевина из фисташкового марципана под слоем нуги и темного шоколада. Традиционно эти круглые конфеты заворачивали в квадратные или прямоугольные фантики из серебристой фольги, и, конечно, часть фольги расходовалась впустую, образуя складки, неизбежные, если пытаешься обернуть шоколадный шарик плоским листком фольги.

Находясь, как все математики, в непрестанном поиске новых знаний, семейный тандем ученых из Нью-Йоркского университета — отец и сын[26] — решил установить минимальный размер кусочка фольги, необходимого, чтобы завернуть «Моцарткугель». Ведь заметное уменьшение размеров фантика позволило бы производителям конфет сэкономить на фольге.

В настоящее время используются два типа фантиков: один квадратный со стороной π ×√2, а другой прямоугольный со сторонами π и 2π. (Отрадно осознавать, что еще до того, как к «Моцарткугелям» потянулись руки американских математиков, в разработке фантиков использовался математический расчет.) В обоих случаях площадь обертки приблизительно на 60 % превышает площадь поверхности конфеты, из-за чего около трети идущей на фантики фольги пропадает впустую.

Не иначе как развернув (а возможно, и съев) немало «Моцарткугелей», математики наконец объявили, что нашли способ упаковывать конфеты в меньшее количество фольги. Они выяснили, что если взять фантик в виде равностороннего треугольника со стороной чуть меньше радиуса шарика, умноженного на пять, то можно завернуть в него конфету целиком и фольги на такой фантик уйдет на 0,1 % меньше, чем на нынешнюю обертку. А если найдутся критиканы, считающие, будто достигнутый результат яйца выеденного не стоит и замечательные математики с их несомненными талантами зря потратили силы, то ученые, надув щеки (а может, засунув туда по парочке ку-гелей), возразят, что их открытие может позволить фабрике, производящей «Моцарткугели», снизить углеродсодержащие выбросы в атмосферу, а значит, «хоть отчасти, но решить проблему глобального потепления».

А если я поведаю, что компания, производящая подлинные «Моцарткугели» (есть еще несколько имитаторов), выпускает в год 1,4 миллиона конфет, вам, может быть, удастся ответить на следующий вопрос Ферми (см. главу «Сколько в Чикаго фортепианных настройщиков?»): сколько килограммов фольги в год сэкономит фабрика, перейдя на фантики в виде равносторонних треугольников?

Гипотеза пожарного

Английский математик Годфри Харолд Харди (1877–1947), работавший в абстрактной сфере так называемой чистой, не прикладной математики, в своей книге «Апология математика» попытался оспорить популярное мнение, будто бы математика — удел избранных и интересоваться ею может лишь незначительная доля населения. Впрочем, попытки его выглядели не особенно убедительно — в одной из своих статей о математике он писал: «“Vorlesungen” [ «Лекции о теории чисел»] Ландау[27] или “История” Диксона[28] — шесть великих томов ошеломляющей эрудиции — куда лучше подходят для чтения за завтраком, нежели итоги футбольных матчей».

Харди указывал на тот факт, что многие с удовольствием играют в шахматы или бридж, а ведь обе эти игры требуют математического мышления, между тем как другие с неменьшим наслаждением решают публикуемые в газетах головоломки. Если бы Харди писал в наши дни, он наверняка отметил бы популярность математических головоломок судоку.

В 2007 году произошел трогательный случай, показавший, что необязательно быть математиком, чтобы увлечься цифрами. (Почему трогательный? Поймете чуть позже.) Нью-йоркский пожарный по имени Бобби Беддиа рассказал своему другу, что прошлый день рождения стал для него особенным — он достиг возраста, который сам называл своим «годом рождения». Он имел в виду год, когда его возраст сравнялся с двумя последними цифрами года рождения. Беддиа родился в 1953 году, следовательно, 53 года ему стукнуло в 2006-м. Каждый может вычислить свой собственный «год рождения» — мой был 1984-й[29]. А вот кого собственный «год рождения» наверняка разочарует, так это тех, кто родился в 1900 или 2000 годах.

Как выяснилось, какой бы ни был на дворе год (за исключением 2000-го), на празднование своего «года рождения» имеют право люди двух возрастов с разницей в полвека. Так, в 2006 году наряду с 53-летними ровесниками Беддиа свой «год рождения» отмечали трехлетки, рожденные в 2003 году, которым в 2006-м соответственно стукнуло три года.

Как и многие аспекты теории чисел, «беддианский год», как нарек его один математик, начался с простого наблюдения, но впоследствии породил несколько интересных вопросов, на которые не всегда легко ответить. Вычислить свой беддианский год, исходя из года рождения, проще простого, но как, например, определить, в каком году родились те, чей беддианский год придется, скажем, на 2014-й? Американский математик Барри Сипра решил копнуть еще глубже и попытался вычислить для каждого года, люди какого возрастного диапазона в этот год могут носит звание добеддианцев, то есть еще не достигших своего беддианского года. Сипра пришел к выводу, что в каждом случае речь идет не об одном, а о двух возрастных промежутках. Взяв для рассмотрения 2007 год, Сипра обнаружил, что к этому времени своего беддианского года еще не достигли малыши от 0 до 3 лет, а также возрастная группа постарше — те, чей возраст лежит в границах между 8 и 53 годами. Для всех остальных: тех, кому от 4 до 7 лет, и тех, кому от 53 до 99, — беддианские годы уже миновали. Сложных математических вычислений тут не требуется, однако нужен некий навык умственного жонглирования фактами, а именно — двумя видами чисел, годами и возрастами, и тем обстоятельством, что жизни многих людей «оседлали» рубеж столетий.

Досконально изучив скрытые возможности беддианской теории, Сипра и сам удивился, как столь простое наблюдение смогло подкинуть ученым несколько весьма непростых задачек. К сожалению, Бобби Беддиа так никогда и не узнал о выводах, сделанных математиком из его открытия. За месяц до окончания своего беддианского года он погиб при тушении пожара в пустующем офисном здании неподалеку от того места, где до 11 сентября 2001 года располагались башни-близнецы Всемирного торгового центра.

Вот так совпадение!

Математика Джека Литлвуда[30] однажды попросили припомнить самое поразительное совпадение в его жизни. В ответ он написал:

«Одна девушка шла по лондонской улице Уолтон в гости к своей сестре, Флоренс Роуз Далтон, служившей в доме номер 42. Она миновала дом номер 40 и подошла к дому номер 42, где действительно работала кухарка по имени Флоренс Роуз Далтон (однако она уехала в двухнедельный отпуск, и на это время кухарку подменила ее сестра). Но то был дом номер 42 на площади Овингтон (в конце эта площадь сужается до размеров улицы). А дом 42 по улице Уолтон находился чуть дальше. (Я гостил в доме на площади Овингтон и услышал об этом курьезном происшествии в тот же вечер.)».

Многие из нас попадали в подобные ситуации или хотя бы слышали о них — волей-неволей поверишь, что в таком, казалось бы, случайном стечении обстоятельств кроется некий глубинный смысл. Однако испытываемое нами изумление зачастую связано с тем, что мы услышали только часть истории или ничего не знаем о такой вещи, как теория вероятности.

Обратимся к первому варианту. Допустим, некто звонит вам по телефону и правильно называет имя лошади, которая победит в предстоящем заезде. Проходит неделя, и этот человек снова звонит вам и опять угадывает победителя. Вас так и подмывает принять его предложение и вложить деньги в лошадь, которая победит на следующей неделе. Но что, если я расскажу вам, что еще до первых скачек, где участвовало десять лошадей, этот человек обзвонил сто человек и назвал имя каждой лошади группе из десяти человек? Во второй раз он позвонил уже только тем десятерым, которым в прошлый раз досталась лошадь-победительница, и назвал каждому по одной лошади из второго заезда. Одному человеку из сотни — то есть в данном случае вам — повезло, ему уже дважды правильно указывали победителя. Ничего удивительного, что вам сложно справиться с искушением и не поставить в третий раз все деньги на кон, хотя в действительности шанс «вашей» лошади на победу всего лишь один к десяти.

Одно из самых широко обсуждаемых «пугающих» совпадений связано с написанным в 1898 году романом «Гибель “Титана”». Книга повествует о корабле под названием «Титан», который во время своего первого рейса, в апреле, столкнулся с айсбергом и затонул. Четырнадцать лет спустя, в апреле, во время первого своего плавания из-за столкновения с айсбергом затонул «Титаник». Погибло 1500 человек, причем многие — из-за нехватки спасательных шлюпок. В книге при крушении «Титана» погибло около 3000 пассажиров и членов экипажа.

Это совпадение на практике куда более вероятно, чем может показаться. Предположим, вы живете в 1898 году и хотите написать полный драматизма роман о кораблекрушении. Вам понадобятся название судна, маршрут, причина катастрофы и еще несколько факторов — наподобие огромного количества жертв и всеобщего внимания к происходящему, — добавляющих рядовой аварии на водах накал страстей. Почти все точные детали из этого списка, позволяющие вымышленному судну «совпасть» с реальным «Титаником», — результат логического выбора. Для начала корабль должен быть большим, а значит, носить имя, отражающее внушительные размеры. Названия «Гаргантюа», «Гигант», «Колосс» и «Громадина» не очень-то «корабельные», а вот что-то из области мифологии, ну, не знаю, допустим, «Титан», вполне может подойти. Если это крупное судно с английскими и американскими пассажирами (автор рассчитывал завоевать англоязычный книжный рынок), то вряд ли оно будет курсировать по Тихому или Индийскому океанам, а вот трансатлантический рейс — самое то. А какова самая распространенная причина кораблекрушений в Атлантике? Айсберги. И в какое время года айсберги представляют наибольшую опасность? В апреле.

Часто, когда мы слышим или читаем истории о поразительных совпадениях, нам преподносят такую версию событий, которая ради пущего эффекта (или для того, чтобы ввести в заблуждение) сдобрена вымышленными деталями. Вот вам пример из книги «Тайны необъяснимого», изданной под эгидой журнала «Ридерз дайджест»: «В 1930-е годы в Детройте мужчина по имени Джозеф Фиглок прогуливался по одной из жилых улиц, как вдруг на него из окна второго этажа выпал ребенок. Фиглок успел его поймать, и младенец отделался легким испугом. Ровно через год Фиглок снова шел по этой улице, и из того же окна прямо на него вывалился все тот же ребенок. Фиглок во второй раз вернул невредимого младенца матери и продолжил прогулку, сам он и на этот раз тоже не пострадал».

Весьма необычно, если, конечно, все вышеизложенное — правда. Но это не так. Найдя в библиотеке журнал «Тайм» за 17 октября 1938 года, мы узнаем следующее:

«Совпадение в Детройте. Дворник Джозеф Фиглок прибирал вверенную ему территорию, когда на него из окна четвертого этажа шмякнулся младенец, ударив его по голове и задев плечи. Зашибив Фиглока, ребенок и сам пострадал, но остался жив. Две недели назад, когда Фиглок подметал другую улицу, из окна четвертого этажа вывалился двухлетний Дэвид Томас и приземлился на голову вездесущего господина Фиглока, причем с такими же последствиями».

Не один и тот же ребенок и не из того же самого окна — а ведь именно эти две детали делали историю совершенно невероятной. Разумеется, описанный в «Тайм» случай все равно не укладывается в рамки рядового, однако даже профессия господина Фиглока сыграла в произошедшем свою роль: раз уж он целыми днями подметает чикагские улицы и переулки, то на кого же и падать выпавшим из окон младенцам, как не на него? Куда больше шансов, что ребенок приземлится на дворника, чем, скажем, на телефонистку, рабочий день которой протекает в помещении.

Пережитые на собственном опыте совпадения могут оказать на человека очень мощное влияние, особенно если он не знаком с данными статистики. Мартин Гарднер, американский математик и автор целого ряда научно-популярных книг, приводит яркий пример того, как возникают байки о вещих снах: «Предположим, некой даме снится, что ее тетушка Мэри погибает при пожаре. При этом мужу тетушки Мэри во сне удается спастись: он прыгает из окна и ломает ногу. Через несколько дней происходит одно из этих событий: тетушка Мэри умирает от болезни, ее муж, попав в аварию, ломает руку или в доме по соседству вспыхивает пожар. В случае смерти тетушки Мэри племянница сможет поведать подружками, что всего несколько дней назад видела во сне, что тетя умрет. Если дядя сломает руку, племянница, скорее всего, припомнит, что в ее сне он сломал какую-то кость, она не знает наверняка, какую именно, но думает, что это была рука. И само собой, если в соседнем доме случится пожар, она вспомнит именно этот аспект сна. Об остальных событиях того же сна, которых может оказаться великое множество, она так и не вспомнит».

Однажды в Кембридже, в библиотеке Тринити-Колледжа, я наугад взял с полки книгу, где была фотография актрисы, игравшей в водевилях, — некой госпожи Сенраб. Я показал снимок сопровождавшему меня коллеге и спросил, не замечает ли он в ее фамилии чего-нибудь странного. Он ответил «нет», и я указал ему, что если прочитать задом наперед, то получится «Барн(е)с»[31]. Может быть, она перевернула свою фамилию, чтобы получился эффектный сценический псевдоним, — трудно сказать наверняка. А потом я добавил:

— Это как с одной улицей в Вашингтоне. Она называется Танлоу, то есть Уолнат[32] наоборот.

Тут со стороны соседнего столика, за которым сидела, изучая что-то, молодая американка, раздалось изумленное «ах».

— Я живу как раз на Танлоу! — еле пискнула она.

А в довершение этой истории я, пожалуй, упомяну, что мой коллега жил в лондонском районе Барнс.

После подобных совпадений обычно возникают два вопроса. Во-первых, если совпадение — не просто итог целой вереницы случайных событий, то какой цели оно служит? Если бы сны о предстоящих несчастьях были вещими, они, по идее, должны были бы помогать предотвратить беду, но что-то я ни разу не встречал достоверной информации, чтобы из-за приснившейся кому-то авиакатастрофы самолет тщательно проверили бы и нашли бы неполадку в двигателе. В других, менее впечатляющих случаях, как тот, что произошел со мной в библиотеке, странное стечение обстоятельств не несет в себе никакой потенциальной пользы. К примеру, девушка с улицы Танлоу вовсе не оказалась моей давно потерянной родственницей (хотя, как потом выяснилось, мой дед по материнской линии одно время жил на улице Честнат[33] в городе Гаррисберге, штат Пенсильвания).

И второй вопрос: если бы мы жили в мире, где совпадений не бывает, заметили бы мы их отсутствие? Что ж, ответ будет: «Да». Ученые и математики[34] наверняка были бы крайне озадачены тем фактом, что, несмотря на расчеты вероятностей (исходя из которых можно предположить, что такое должно случаться сплошь и рядом), в мире, как ни странно, нет ни вещих снов, ни романов, обладающих смутным сходством с последующими событиями. И это отсутствие нуждалось бы в куда более серьезных объяснениях, чем нынешнее наличие подобных явлений.

Слова для счета, счет за слова

Мы настолько привыкли к словам, обозначающим те или иные числа, что даже трудно вообразить, каково это было, когда человечество только-только приблизилось к идее счета. Британский социальный антрополог Альфред Гелл (1945–1997) описал реакцию детей из клана умеда, обитающего на Новой Гвинее, когда их начали обучать счету:

«Я присутствовал там в тот безумный день, когда дети наконец усвоили простейшие принципы счета и в особенности тот факт, что при помощи чисел можно считать что угодно. Вырвавшись из здания школы, взволнованные дети маленькими стайками бегали туда-сюда и применяли на практике свое только что обретенное умение: они пересчитывали сваи домов, собак, деревья, пальцы на ногах и руках, друг друга — и всякий раз у них… получалось!»

Используемые нами числительные основаны на десятичной системе счисления. Все мы помним, как изменяются количественные числительные при переходе от первого десятка ко второму, как образуются числительные после ста и как это все соотносится с основанием системы — числом «десять». Занимаясь изучением умственных способностей и навыков жителей разных уголков планеты, антропологи обнаружили, что, хотя в основе большинства систем счета лежит 10, существуют и весьма причудливые альтернативные системы счисления, разработанные самостоятельно, а не перенятые у более продвинутых народов.

Некоторые народы используют двоичную систему. У австралийских гумулгалов[35], южноамериканских бакаири и южноафариканских бушменов есть слово, означающее цифру 1, и слово, означающее 2, и весь счет строится на их основе. Так, например, гумулгал, начав с единицы, считает следующим образом: «Один, два, один-два, два-два, два-два-один…» и так далее.

Вслед за двоичной системой по популярности следует пятеричная. Североамериканские зуни[36] разработали красивую систему чисел, основанную на количестве пальцев одной руки. Если перевести названия их числительных, то получится следующее:

1 «тот, с которого начинают»,

2 «опускаемый вместе с»,

3 «палец, делящий поровну»,

4 «все пальцы, все-то все, да без него не обойдешься»,

5 «отрезанный от остальных» (предположительно большой палец).

Однако не все пятеричные системы ориентируются на пальцы руки. Южноамериканские индейцы абипоны для обозначения числа 4 применяют слово «гейенкнате» — «пальцы на лапах эму», а 5 на их языке звучит как «неенхалек» — «прекрасная шкура пяти цветов».

В системе счисления на основе небольших чисел (двух, пяти или десяти) числительные могут выглядеть довольно неуклюже, зато можно легко догадаться, по какому принципу они образуются, и считать хоть до бесконечности. Другая популярная система счисления — двадцатеричная, по количеству пальцев на руках и ногах. У проживающего на территории Бразилии галиби[37] числительное 20 звучит как «поупоу паторет оупоуми» и означает «ноги и руки». Но порой антропологи сталкиваются с более замысловатыми и громоздкими системами счета. Народ кева на Новой Гвинее выстроил свои расчеты на базе числа 47. К этому числу они пришли, считая части тела по кругу: сначала пальцы руки, бугорок большого пальца, ладонь и так далее на одной стороне тела, включая предплечье, плечо, шею, глаз, переносицу, а затем все то же самое на второй половине тела. Преимущество этой системы счисления в том, что, указав на ту или иную часть тела, вы тем самым можете быстро сообщить собеседнику любое число от 1 до 47.

Довольно сложно представить, как собиравших эту интереснейшую информацию антропологов воспринимали опрашиваемые аборигены. Однако некоторые свидетельства до нас все же дошли.

Французский антрополог Уту Лабилльярдиер[38] направлялся в Тонга, экспедиционное судно потерпело крушение, и ученому пришлось прожить среди местных жителей немало времени. Он распорядился этим временем с пользой. Заинтересовавшись словами, которыми жители Тонга обозначают большие числа, он обнаружил, что у тонганцев весьма обширный словарный запас. Узнав новое слово, антрополог аккуратно его записывал. Де Лабилльярдиер с удивлением выяснил, что у местных жителей есть отдельные слова для крупных круглых чисел: скажем, 10 000 000 они называли «лаоалаи», а 10 000 000 000 — «толо тафаи». Подобную легкость в обращении с огромными числами он объяснял так: «Нужно отдавать себе отчет, что люди, которым постоянно приходится считать батат, будь то один-два клубня или три тысячи, неизбежно должны были стать неплохими изобретателями числительных и найти способ упростить процесс счета».

Однако впоследствии антропологи, лучше понимавшие язык тонганцев, пришли к выводу, что местные жители просто подшутили над де Лабилльярдиером. Слово, которое они выдавали за 10 000 000, на самом деле означало «крайнюю плоть», вместо 10 000 000 000 они научили его произносить по-тонгански «пенис»; остальные мнимые числительные обладали столь же игривыми значениями. А самое большое число, какое де Лабилльярдиер мог себе вообразить, со слов тонганцев называлось «кы ма оу». Как потом выяснилось, эта фраза означает: «Нажрись всеми вещами, о которых мы тебе только что рассказали».

Ох и смеялись же они, наверное, в тот вечер за ужином, сидя вокруг котелка с варевом и вспоминая незадачливого чужеземца.

Флора и фауна