Вероятности и неприятности. Математика повседневной жизни — страница 10 из 40

Может быть, нужно указать два числа: среднее и дисперсию? Это уже лучше, но опять же пример с игральной костью показывает, что это явно не вся информация об интересующем нас объекте. А что, если случайные величины — не числа, а множества? Скажем, уровень воды в реке можно попытаться описать интервалом возможных значений с учетом волнения, а для примера с машинами сказать, что за час проезжает от 1 до 100 автомобилей и т. д. Но легко увидеть, что и множества возможных значений тоже недостаточно: например, при многократном повторении измерения количества автомобилей на улице какие-то числа будут встречаться чаще, а каких-то мы не дождемся вовсе.

В предыдущей главе, определяя вероятность, мы ввели меру как функцию на вероятностном пространстве. Для случайной величины элементарными событиями этого пространства будут элементы области ее определения, а мерой задается распределение вероятностей для этой величины. И вот это уже исчерпывающая и точная информация. Итак, подводим итог: случайная величина однозначно и полностью характеризуется своим распределением. Распределение, в свою очередь, представляет собой функцию. Ее область определения — множество возможных значений случайной величины, а область значений этой функции — вероятности для этих значений.

Для уровня воды в реке или скорости машин распределение может быть выражено в виде гладкой колоколообразной кривой. Количество машин, зафиксированных на дороге в единицу времени, должно быть натуральным числом, и его распределение можно представить в виде дискретной функции, определенной только на натуральных числах, или точной формулы. Наконец, моделью игральной кости может быть таблица, показывающая вероятность выпадения каждого из возможных чисел (рис. 3.2).


Рис. 3.2. Примеры представления распределений различных случайных величин


Функции можно представлять аналитически или в виде приближения другой функцией, таблицы, гистограммы либо графика. Все эти представления — модели одного и того же объекта, случайной величины. Самое важное тут — не столько конкретный вид представления, сколько математические свойства этой функции. Для распределений вероятностей свойства бывают разными: количество параметров, количество мод, энтропия, бесконечная делимость, аддитивность, устойчивость, интегрируемость и т. д. Изучением распределений и их свойств занимается теория вероятностей. Но на практике часто встречается иная задача: необходимо найти модель для случайной величины, если мы не имеем полной информации о ней, но значения которой можем наблюдать, проводя эксперименты. Из огромного арсенала известных распределений с точно определенными свойствами исследователь выбирает не столько «самую похожую» функцию, сколько функцию, наиболее совпадающую по свойствам с наблюдаемой случайной величиной. Это составляет суть статистического анализа, который знаком каждому студенту, прикоснувшемуся к математической статистике.

Сейчас нам нужно задать параметры бутерброда случайными числами, не имея статистических данных, а руководствуясь лишь нужными нам свойствами этих величин. Это важная и интересная часть метода Монте-Карло, от которой зависят и решение, и его корректность.

Размеры бутерброда. Какими они могут быть? Разумной величины канапе имеет сантиметра три в ширину, а студенческий добрый «лапоть» может быть сантиметров пятнадцать. При этом вероятность встретить бутерброд миллиметровой или метровой ширины в практическом смысле равна нулю. Больше про бутерброды я ничего сказать не могу и приму их размеры равномерно распределенными в указанном диапазоне (рис. 3.3). Запишем это так:

l ~ Uniform([3,15]).


Рис. 3.3. Возможное распределение для размеров падающего бутерброда


В случае равномерного распределения на некотором отрезке [a,b] случайная величина имеет всюду одинаковую плотность, равную 1/(b — a). В этом случае плотность распределения принимает вид прямоугольника, а вероятность попасть в какой-нибудь отрезок пропорциональна его длине. Такой выбор не идеален: всё же средние бутерброды мы встречаем чаще крошечных или гигантских. Но позже мы увидим, что это слабое место можно изящно обойти.

Начальное положение. Тут мы, не мудрствуя, зададим равномерное распределение для смещения бутерброда за край стола, лишь бы он вообще упал:

dl ~ Uniform([l/2,l]).

Коэффициент трения. Это неотрицательная безразмерная величина, зависящая только от материала. Столы и скатерти бывают разные, пальцы сжимают бутерброд с разной силой. Диапазон коэффициента от 0,01 до 0,9, при этом крайние значения маловероятны, в среднем можно ожидать около 0,3. Для моделирования неизвестного коэффициента трения нам поможет любое колоколообразное несимметричное распределение неотрицательной величины (рис. 3.4), например гамма-распределение:

μ ~ Gamma(8,25).

Оно будет часто встречаться в этой книге. Почему? Об этом вы узнаете в самом конце.


Рис. 3.4. Возможное распределение для коэффициента трения между бутербродом и поверхностью стола


Начальная скорость. Мы редко запускаем бутерброды с большой скоростью, чаще всего не кидаем их вовсе, но всё же иногда смахиваем. Про величину скорости известно лишь то, что она положительна. Можно предположить, что при смахивании в среднем мы движемся так же, как в среднем руки, — со скоростью около 0,5 м/с. Если про случайную величину известно только это, то ее разумно описать экспоненциальным распределением (рис. 3.5):

v0 ~ Exp(2).


Рис. 3.5. Возможное распределение для скорости, с которой бутерброд смахивается со стола


Его мода (положение максимума на графике) равна нулю, так что доля бутербродов, упавших без большой начальной скорости, будет вполне приличной. В тонком «хвосте» окажутся бутерброды, нечаянно запускаемые в полет при смахивании крошек со стола. Тут стоит обратить внимание на то, что экспоненциальное распределение, вообще говоря, отлично от нуля на всей положительной полуоси; а это значит, что ненулевую вероятность имеют и сверхзвуковая, и сверхсветовая скорости. Однако вероятность наблюдать их при указанном параметре чрезвычайно мала: для скорости, превышающей 10 м/с, она равна одной миллиардной, так что этой опасностью вполне можно пренебречь.

Эксперимент строился так: я «ронял» со стола фиксированной высоты сотню бутербродов, подсчитывал среди них долю тех, что упали маслом вниз, и, используя частотное определение вероятности, отражал на графике зависимость вероятности такого исхода от высоты стола. Вот что у меня получилось (рис. 3.6).


Рис. 3.6. Вероятность приземления маслом вниз разных бутербродов с разными условиями в зависимости от высоты падения. Для каждой высоты проводилось 100 испытаний


Какая-то тенденция видна, но в глаза не бросается. При усреднении получается, что искомая вероятность от высоты стола почти не зависит и едва превышает 50 %. Можно ли доверять такому эксперименту? Опровергает ли он закон бутерброда? Может, мы недостаточно много бросали бутербродов — вон какие шумные получились данные![11] Увеличим число бросаний и посмотрим, что получится (рис. 3.7).


Рис. 3.7. Вероятность приземления маслом вниз разных бутербродов, посчитанная для большего числа испытаний (по 500 на каждую высоту)


Выбросов стало меньше, но еще отчетливее видно, что закон бутерброда какой-то невыразительный. Отклонения от 50 % не настолько значительны, чтобы стоило говорить о каком-то «законе». Что же, мы готовы его развенчать?

Метод Монте-Карло выглядит заманчиво простым: знай себе подставляй какие попало данные и смотри, что получается. Математика — честная штука: на какой попало вопрос она готова дать какой попало ответ. А вот имеет ли смысл этот ответ, сильно зависит от вопроса. Правильно ли мы проводили наши эксперименты?

Как правильно задавать вопрос природе?

Перед тем как приступать к экспериментам, не таким игрушечным, как у нас, а настоящим и дорогостоящим, использующим орбитальный спутник, ускоритель элементарных частиц или тысячу настоящих бутербродов с маслом, необходимо провести подготовительную работу. И один из мощных и красивых методов, позволяющих понять, как верно и оптимально провести эксперимент, — анализ размерностей задачи.

Механику бутерброда мы рассчитывали, пользуясь импульсами и силами — физическими величинами, которые, в свою очередь, связаны уравнениями аналитической механики. И вновь это не просто числа. В физике количественные величины, которые мы измеряем и подставляем в уравнения, не «умещаются» в поле чисел. Они оснащены дополнительной структурой, которая называется размерностью. Не все корректные математические выражения имеют смысл, если в них участвуют размерные величины. Скажем, нет смысла складывать скорость и массу, невозможно сравнить силу и расстояние. Однако можно рассмотреть произведение скорости и массы, получив новую размерную величину — количество движения, или импульс; можно возвести скорость в квадрат и поделить на расстояние, получив таким образом величину, имеющую размерность ускорения.

Анализ размерности и теория подобия родились давно. Со времен лорда Рэлея они используются в механике, электродинамике, астрофизике и космологии, позволяя с пугающей изящностью подходить к решению очень сложных задач. Однако исследования в этой области не завершены, и строгое определение структуры, образуемой количественными (размерными) величинами, было дано лишь в 2016 году испанским математиком Альваро Рапозо[12].

Ограничения, накладываемые размерностями на физические формулы, часто воспринимаются учениками и студентами как лишняя морока, за которой нужно следить. Но логически согласованные ограничения чрезвычайно полезны! Они отсеивают неверные выражения, позволяют «предвидеть» структуру решения физической задачи до ее детального разбора, это мощный инструмент при планировании и анализе экспериментальных данных.