Вероятности и неприятности. Математика повседневной жизни — страница 13 из 40

M| и M- будут пропорциональны M|φ| и M-φ-, а углы, которые заметают торец и плоскость, показаны на чертеже ниже. Мы могли бы в качестве меры использовать работу сил сопротивления и получили бы такое же соотношение. Отношение углов легко вычислить:


При малых значениях отношения d/l можно воспользоваться приближением: φ| ≈ δ (используем свойство тангенса малого угла, выполняющегося с 10 % точностью при углах меньше 30°), а значит, имеем:

Опять получается, что влияние несимметричности для плоского бутерброда ограничивается эффектом второго порядка. Обычно плотность масла превышает плотность хлеба примерно вдвое. Таким образом, смещение центра масс не должно превышать трети толщины бутерброда при разумном слое масла (не больше толщины хлеба). Это уменьшит влияние масла до 0,2 %.

Если читателю показалось, что мы сейчас палили из пушки по воробьям, то я с ним полностью соглашусь. Но, во-первых, мне не хочется больше слышать о «перевешивающем» масле; во-вторых, я не желаю быть голословным; а в-третьих, я стремился показать, как физик оценивает величины, представляя процесс, но не обладая полными данными. Конечно, в момент приземления масло может прилипнуть к полу и не дать бутерброду подпрыгнуть и перевернуться вновь, но механику удара, упругой деформации и подскока кусочка хлеба я уж точно разбирать не буду. И так многовато анализа для этой проблемы. И вторую Шнобелевскую уже не дадут.

* * *

Не так важна была цель нашего пути: опровержение либо оправдание закона бутерброда, — как сам путь. Он показал, как совмещение разных математических методов позволяет взглянуть на задачу с разных сторон, и дает достаточно точное знание — даже без детального решения задачи. В согласованности различных математических дисциплин, подходов и точек зрения состоит сила и красота математики. Тут уместно вспомнить чудесные слова Марины Цветаевой: «Я не хочу иметь точку зрения, я хочу иметь зрение». Изучение разных областей математики способно дать исследователю настоящее «объемное» многомерное зрение, позволяющее заглянуть в кажущееся закрытым и скрытым пространство знаний.

Глава 4. Статистика как научный способ чего-либо не знать

Цифры обманчивы, особенно когда я сам ими занимаюсь; по этому поводу справедливо высказывание, приписываемое Дизраэли: «Существует три вида лжи: ложь, наглая ложь и статистика».

Марк Твен[14]

Как часто летом мы намереваемся на свои выходные выехать на природу, прогуляться в парке или устроить пикник, а потом дождь разбивает наши планы, заточив нас в доме! И ладно бы это случалось раз или два за сезон; порой складывается впечатление, что непогода преследует именно выходные дни, раз за разом выпадая на субботу или воскресенье!

Совсем недавно вышла статья австралийских исследователей «Недельные циклы пиковой температуры и интенсивность городских тепловых островов»[15]. Ее подхватили новостные издания и перепечатали результаты с таким заголовком: «Вам не кажется! Ученые выяснили: погода на выходных действительно хуже, чем в будние дни». В цитируемой работе приводится статистика температуры и осадков за много лет в нескольких городах Австралии, и вправду выявляющая понижение температуры на 0,3 °C в определенные часы субботы и воскресенья. Там же этому дается объяснение. Оно связывает локальную погоду с уровнем загрязненности воздуха из-за возрастающего транспортного потока. Незадолго до того подобное исследование проводилось в Германии[16] и привело примерно к тем же выводам.

Согласитесь, доли градуса — весьма тонкий эффект. Сетуя на непогоду в долгожданную субботу, мы обсуждаем, был ли день солнечным или дождливым. Такое обстоятельство проще зафиксировать, а позже вспомнить, даже не обладая точными приборами. Мы проведем собственное небольшое исследование на эту тему и получим замечательный результат: можно уверенно утверждать, что мы не знаем, связаны ли на Камчатке день недели и непогода. Исследования с отрицательным результатом обычно не попадают на страницы журналов и в новостные ленты, но нам важно понять, на каком основании мы можем что-либо уверенно заявлять о случайных явлениях. И в этом плане отрицательный результат ничем не хуже положительного.

Слово в защиту статистики

Статистику обвиняют во множестве грехов: и во лжи, и в возможностях манипуляций, и, наконец, в непонятности. Но мне очень хочется реабилитировать эту область знаний, показать, насколько сложна задача, для которой она предназначена, и как непросто понять ответ, который дает статистика.

Теория вероятностей оперирует точными знаниями о случайных величинах в виде распределений или исчерпывающих комбинаторных подсчетов. Еще раз подчеркну, что иметь точное знание о случайной величине возможно, если мы говорим о распределении. Но что, если это знание нам недоступно, а единственное, чем мы располагаем, — наблюдения? У разработчика нового лекарства есть ограниченное число испытаний, у создателя системы управления транспортным потоком — лишь ряд измерений на реальной дороге, у социолога — результаты опросов. Причем он может быть уверен в том, что, отвечая на какие-то вопросы, респонденты просто соврали.

Понятно, что одно наблюдение не дает ровным счетом ничего. Два — немногим больше. Сколько нужно наблюдений — три, четыре, сто, — чтобы получить какое-то знание о случайной величине, в котором можно быть уверенным в математическом смысле? И что это за знание? Скорее всего, оно будет представлено в виде таблицы или гистограммы, дающей возможность оценить некоторые параметры случайной величины, например область определения, среднее или дисперсия, асимметричность и т. д. Быть может, глядя на гистограмму, удастся угадать точную форму распределения. Это и есть основная задача математической статистики: по наблюдаемым реализациям случайной величины выяснить ее распределение, то есть получить по возможности точное и исчерпывающее ее описание. Но — внимание! — все результаты наблюдений сами будут случайными величинами! Пока мы не владеем точным знанием о распределении, все результаты наблюдений дают нам лишь вероятностное описание случайного процесса. Случайное описание случайного процесса — еще бы здесь не запутаться, а то и захотеть запутать намеренно!

Что же делает математическую статистику точной наукой? Ее методы позволяют заключить наше незнание в четкие рамки и дать вычислимую меру уверенности в том, что в этих рамках наше знание о случайной величине согласуется с фактами. Это язык, на котором можно говорить о случайностях неизвестной природы так, чтобы рассуждения имели смысл. Такой подход очень полезен в философии, психологии и социологии, где очень легко пуститься в пространные рассуждения и дискуссии без надежды на получение настоящего знания и тем более доказательства. Грамотной статистической обработке данных посвящено множество книг, ведь это абсолютно необходимый инструмент для медиков, социологов, экономистов, физиков, психологов — словом, всех специалистов, научно исследующих «реальный мир», который отличается от идеального математического лишь степенью нашего незнания о нем. Я получил упрек за то, что использовал кавычки вокруг слов «реальный мир», как если бы не верил в его существование. Такое направление в философии действительно есть, оно называется солипсизмом, но я не его сторонник. Кавычками я хочу подчеркнуть, что не разделяю мир на реальный и идеальный, физический и математический. Я не вижу причин считать математические структуры тем, чего нет в мире, в котором мы живем. Это глубокий вопрос и давний спор: математик исследует настоящую Вселенную или изобретает свою, ненастоящую? Я не хочу долго рассуждать на эту тему, поскольку не вижу, как тот или иной ответ может помочь математику или физику в его работе. Но одним из чудес нашего мира по праву считается то, что он описывается на языке математики, доступном человеку.

Теперь еще раз взгляните на эпиграф к этой главе и осознайте, что статистика, которую так пренебрежительно называют третьим видом лжи, — единственное, чем располагают все естественные науки. Это ли не главный закон подлости мироздания! Все физические и наблюдаемые нами экономические законы строятся на математических моделях и их свойствах, но проверяются они статистическими методами в ходе измерений и наблюдений. В повседневности наш разум делает обобщения и подмечает закономерности, выделяет и распознаёт повторяющиеся образы. Это, наверное, лучшее, что умеет человеческий мозг. Именно этому в наши дни учат искусственный интеллект. Но разум экономит силы и склонен делать выводы по единичным наблюдениям, не сильно беспокоясь о точности или обоснованности этих заключений. По этому поводу есть замечательное самосогласованное утверждение из книги Стивена Браста «Исола»[17]: «Все делают общие выводы из одного примера. По крайней мере, я делаю именно так». И пока речь идет об искусстве, характере домашних любимцев или обсуждении политики, об этом можно сильно не беспокоиться. Однако при строительстве самолета, организации диспетчерской службы аэропорта или тестировании нового лекарства уже нельзя сослаться на то, что «мне так кажется», «интуиция подсказывает» и «в жизни всякое бывает». Тут приходится ограничивать работу своего разума рамками строгих математических методов.

Эта книга не учебник, мы не будем детально исследовать статистические методы и ограничимся лишь одной из техник проверки гипотез. Но мне хотелось бы показать ход рассуждений и форму результатов, характерных для этой области знания. И, возможно, кому-то из читателей, к примеру будущему студенту, не только станет понятно, зачем его мучают матстатистикой, всеми этими QQ-диаграммами, t- и F-распределениями, но и придет в голову другой важный вопрос: а как вообще возможно знать что-нибудь наверняка о случайном явлении? И что именно мы узнаём, используя статистические данные?