одномерные распределения — распределения в одномерном пространстве исходов. Но жизнь многогранна и уж точно не одномерна! А при добавлении дополнительных размерностей порой происходят весьма неожиданные события.
Начнем с многомерного арбуза
Одна из особенностей многомерной геометрии — увеличение доли пограничных значений в ограниченном объеме. Вот что имеется в виду. Рассмотрим классическую задачу об арбузе в пространствах с различной размерностью и зададимся целью выяснить, сколько чудесной сахарной мякоти нам достанется от этого огромного, крепкого и аппетитного арбуза, если, надрезав его, мы выяснили, что толщина его корки не превышает 15 % от его радиуса? Кажется, что это многовато, но посмотрите на рис. 5.1: пожалуй, арбуз с такими пропорциями мы сочтем вполне приемлемым. Рассмотрим сначала одномерный арбуз, в виде розового столбика. Его корка представляет собой два маленьких белых отрезочка по краям, ее суммарная длина будет мерой (обобщенным объемом) в одномерном мире и составит 15 % от общей меры арбуза. У двумерного, блинообразного арбуза мера корки в виде площади белого кольца будет меньше, чем внутренняя часть, уже всего в три раза. В привычном нам трехмерном мире такая корка составит почти 40 % общего объема. Чувствуете подвох?
Рис. 5.1. Задача об арбузе
Такую возрастающую роль границ мы уже встречали, когда рассматривали туристический закон подлости. Но тогда мы ограничились двумерным случаем, вполне естественным для топографических карт. Сейчас мы пойдем дальше.
Для шара, как, впрочем, и для тела произвольной формы, можно точно вычислить зависимость доли корки от общего объема тела. Ее легко получить и обобщить на произвольно многомерные пространства, вновь воспользовавшись анализом размерности и общим понятием меры. Для сплошного тела в пространстве размерности m его мера, или обобщенный объем, пропорциональна степенной функции от характерного размера тела d:
V ∝ dm.
Под знаком пропорциональности здесь скрывается константа, которая называется формфактором. Она зависит от формы тела и размерности пространства, но не зависит от размеров: для куба она равна 1, для шара того же размера выражается сложнее — через гамма-функцию: πm/2/Γ(m/2+1), которая для целых аргументов сводится к факториалу числа (Γ(n+1) = n!) и т. д. Ни конкретная форма, ни этот коэффициент для анализа нам не нужны. Под сплошным я понимаю тело, не относящееся к фрактальным. Такие объекты отличаются от сплошных именно тем, что их обобщенный объем пропорционален их размеру в некоторой дробной степени, отличной от размерности вмещающего пространства. С примерами фрактальных объектов — множеством Жулиа и губкой Менгера — мы уже встречались раньше, когда рассматривали подмножества нулевой меры. Может показаться, что это экзотика, но природа находит фрактальные решения для очень многих задач: от роста кристаллов до разряда молнии, от корневой системы растений до устройства наших легких. Но, повторюсь, здесь мы будем рассматривать только сплошные тела.
С объемом как с мерой мы разобрались в главе 1, а что такое характерный размер? Мы можем сказать, что человек имеет характерный размер порядка метра, а муравей — миллиметра. В то же время характерный размер нашей Галактики — 100 тысяч световых лет. Все эти объекты имеют весьма сложную форму, но когда мы говорим о характерных размерах, она нас не интересует. Это понятие можно строго определить как среднее геометрическое размеров тела в разных направлениях или как диаметр шара, имеющего такой же объем, как и рассматриваемое тело.
Объем корочки равен следующей разнице:
Vкорки = Vобщ — Vвнутр,
а отношение объема корки, составляющей долю δ от размеров тела, к общему объему выражается так:
Как хорошо получилось — мы перешли от пропорциональности к точному равенству. Все благодаря отношениям, в которых сократились неизвестные нам формфактор и размеры тела. Таким образом, полученное соотношение объема корки и объема тела универсально и годится для арбузов сколь угодно сложной формы.
Вот как выглядит график роста доли пятнадцатипроцентной по радиусу корочки арбуза в его объеме при дальнейшем увеличении размерности пространства (рис. 5.2).
Рис. 5.2. В четырехмерном пространстве наш условно тонкокорый арбуз оставит нам уже лишь половину мякоти, а в одиннадцатимерном мы сможем полакомиться 15 % арбуза, выбросив корочку, составляющую 15 % его радиуса!
Итак, сейчас мы готовы сформулировать глубокомысленный закон арбузной корки:
Мне одному кажется, что я нормальный?
Обидно, конечно, но какое это имеет отношение к нормальности нашего мира и законам подлости? Увы, именно этот закон препятствует отысканию так называемой золотой середины, обесценивает результаты социологических опросов и повышает роль маловероятных неприятностей.
Дело в том, что пространство людей со всеми их параметрами существенно многомерно. В качестве различных размерностей можно рассматривать и очевидные рост, вес, возраст и достаток, а также уровни интеллектуального (IQ) и эмоционального (EQ) развития; наконец, наблюдаемые, хоть и плохо формализуемые черты лица либо характера — такие как уровень болтливости, упрямства или влюбчивости — тоже относятся к нашим параметрам. Мы без труда насчитаем с десяток-полтора величин, характеризующих человека. И для каждого из этих параметров существует некая статистически определяемая «норма» — самое ожидаемое и, более того, часто наблюдаемое значение. Сколько же в таком богатом пространстве параметров окажется людей, типичных во всех отношениях? Выражение, которое мы использовали для определения отношения объемов корки и арбуза, можно использовать и для вычисления вероятности попасть в число хоть в чем-то, но «ненормальных». Если мы сочтем все параметры независимыми (для некоторых пар параметров это может быть верно только приближенно), вероятность удовлетворить всем критериям типичности одновременно равна произведению вероятностей оказаться типичным по каждому критерию отдельно.
И вновь колмогоровское определение вероятности, которое мы ввели в самом начале, сильно упростит задачу, избавив нас от пугающих формул, по которым нельзя ничего толком вычислить. Полученная нами формула арбуза работает для любых, сколь угодно сложных форм. В том числе не имеющих границы, подобно атмосфере Земли, уходящей далеко в космическое пространство, становясь все тоньше. Так что нам не нужно знать, каким именно распределениям подчиняются обсуждаемые качества людей, остается лишь предположить, что у них есть среднее значение (а это, как мы увидим, бывает не всегда). Если обозначить как Pout вероятность оказаться за пределами области, которую мы сочли бы нормой, то вероятность оказаться ненормальным в чем-нибудь при рассмотрении m критериев будет вычисляться по «арбузной» формуле (рис. 5.3):
P = 1 — (1 — Pout)m.
Рис. 5.3. Математическая модель арбуза
Вот она — сила правильно выбранной модели! Толщину корки арбуза мы измеряли линейкой, попадание случайной величины в какой-нибудь диапазон — вероятностью. Какой бы малой ни была вероятность Pout, при m> ln(1/2)/ln(1 — Pout), значение P превысит 1/2.
Для внесения хоть какой-то конкретики можно предположить, что параметры, о которых мы говорим, имеют нормальное распределение. Это вполне разумно для наших целей, ведь мы не говорим о каком-то конкретном наборе характеристик, а, прямо скажем, фантазируем, стараясь сформулировать хоть что-то определенное в столь зыбкой теме. Выбор нормального распределения адекватно отражает степень нашего неведения, и загружаться подробностями до тех пор, пока не видна самая общая картина, рановато. Итак, наш арбуз превратился в размытое туманное пятно, что не мешает нам вычислить долю его «корки». Для «хорошего» в каком-то смысле распределения за норму можно принять значения, не отклоняющиеся от среднего больше чем на величину стандартного отклонения. Для нормального распределения доля значений, выходящих за пределы нормы, имеет Pout = 16 %, примерно как в рассмотренном нами реальном арбузе. Применительно к нашему нечеткому арбузу здесь имеется в виду вероятность оказаться на удалении в одно стандартное отклонение от среднего, как показано на рис. 5.4. При более толерантном понимании нормы можно ограничиться двумя стандартными отклонениями, получив Pout = 2,3 %.
Рис. 5.4. Вероятности оказаться «ненормальным» для разного числа критериев сравнения и «строгости» определения нормы. Верхний и нижний графики различаются тем, что при определении «нормальности» используют радиус в одно и два стандартных отклонения соответственно
Что ж, выходит, это нормально — быть хоть в чем-то ненормальным. Оценивая людей по десятку параметров, будьте готовы к тому, что полностью заурядными окажутся лишь 2 % общей популяции. Причем как только мы их разыщем, они тут же станут знаменитостями, утратив свою заурядность!
В погоне за Нормой
Нетипичность нормы и ментальные ошибки, к которым может привести попытка усреднения многопараметрических систем, подробно рассматриваются в книге Тодда Роуза «Долой среднее!»[23]. В частности, в ней приводится история времен начала Второй мировой войны. В попытке разобраться в причинах ошибок пилотов боевых самолетов командование ВВС США предприняло исследование, основной целью которого было уточнить средние характеристики летчиков. От этих параметров зависели конкретные инженерные решения по проектированию эргономики кабины. Считалось, что чем точнее будут известны эти характеристики, тем более эргономичной окажется разработанная на их основе техника. Каково же было удивление молодого антрополога Гилберта Дэниэлса, которому поручили эту работу, когда выяснилось, что из четырех тысяч обмеренных им пилотов не обнаружилось ни одного «среднего», для которого кабина самолета оказалась бы удобной по всем параметрам. Всего использовалось 10 физических характеристик, и Дэниэлс придерживался очень строгого критерия «нормальности»: выходящим за пределы нормы считалось отклонение от среднего, превышающее 30 % от всей выборки. Мы теперь можем вычислить, что для десяти параметров вероятность попасть в нормальные значения по таким критериям составит 0,0006 % — 1 человек на 170 тысяч! В конце концов Дэниэлс пришел к заключению, опубликованному уже после войны: в реальности среднего пилота не существует. Если вы проектируете кабину для него, то она не подойдет ни для кого. Чтобы повысить эффективность солдат, в том числе летчиков, рекомендуются радикальные изменения: окружение должно соответствовать индивидуальным параметрам, а не средним.