Вероятности и неприятности. Математика повседневной жизни — страница 23 из 40

λ = 1/7 соответствует цепочка случайных событий, в среднем происходящих раз в неделю. Это вовсе не означает, что события будут происходить строго с частотой раз в неделю. Никакой определенной частоты у последовательности событий нет. Это среднее число событий: поскольку в году 52 недели, за год должно произойти около 52 событий (в среднем за много лет), но они будут разбросаны в году неравномерно. На рисунке 6.1 показаны 52 случайные равномерно распределенные даты в году, которые можно рассматривать как моменты появления пуассоновских событий.


Рис. 6.1. Пример построения пуассоновского потока с интенсивностью 1/7 (время измеряется в днях). На отрезке в 365 дней случайным образом разбросали никак не связанные между собой 52 события


Как видите, о какой-либо периодичности в этих событиях речь не идет: когда пожелают, тогда и случатся. Но и в этом беспорядке статистика может нам показать определенные закономерности. Например, распределение длительности периодов между событиями, показанными на предыдущем рисунке, будет вовсе не равномерным (рис. 6.2).


Рис. 6.2. Плотность распределения длительностей промежутков между 52 событиями, случайно разбросанными по отрезку в 365 дней


Промежутки времени между соседними пуассоновскими событиями имеют экспоненциальное распределение с плотностью λe—λt (на рисунке для нашего случая показана сплошной линией). У этого распределения максимум (мода) находится в нуле, а среднее значение равно 1/λ, в нашем случае 7 дней. Более того, стандартное отклонение σ тоже равно 7 дням, поскольку дисперсия экспоненциального распределения σ2 = 1/λ2. Как видите, эти характеристики вовсе не гарантируют того, что между событиями будет проходить одна неделя. В среднем — да, но чаще всего меньше; к тому же могут наблюдаться и достаточно долгие промежутки без событий. Наконец, медиана показывает, что половина всех промежутков будет иметь длительность не более 5 дней. Интенсивность и частота — совсем не одно и то же; это очень важное замечание, к которому мы еще вернемся в этой главе.

Для справедливости положим, что хорошие и плохие события происходят равновероятно, но яркие и значимые (как хорошие, так и плохие) — существенно реже мелких и незначительных. Пусть это будет «обычная» жизнь, в которой эмоциональная окраска событий подчиняется нормальному (гауссовскому) распределению. Вот как может выглядеть год синтетической судьбы в виде череды случайных абсолютно независимых жизненных перипетий (рис. 6.3).


Рис. 6.3. Череда событий различной эмоциональной окраски, образующая пуассоновский поток с интенсивностью 2/7 (2 события в 7 дней)


Знак пиков отражает эмоциональную окраску, а их высота соответствует важности события или глубине переживаний, с ним связанных. Пока никаких полос не наблюдается, есть некий шум. Каждое событие проходит бесследно, ничего не оставляя ни в памяти, ни в настроении. Так не бывает, поэтому наделим нашего модельного героя памятью — для начала идеальной. Каждое событие пусть навсегда врежется в его память и отразится на настроении, либо улучшая, либо ухудшая его. Вот какую картинку мы можем получить, понаблюдав за судьбой нашего героя на протяжении десяти лет (рис. 6.4). Текущий «уровень счастья» вычисляется суммированием вкладов всех предшествующих событий. Позитивные события эту сумму увеличивают, а негативные — уменьшают.


Рис. 6.4. События, сливаясь в памяти, образуют эмоциональную окраску «синтетической жизни»


Ну что же, мы уже видим какое-то чередование настроения, но картинка вышла не особо радостной. Наш герой после череды смен настроения впал в глубочайшую депрессию. Жаль. Попробуем сгенерировать еще несколько судеб (рис. 6.5). Все они проходят череду светлых и темных полос, но надолго увязают либо в беспросветной тоске, либо в запредельном счастье. Так бывает, конечно, но это явно ненормально.


Рис. 6.5. Несколько примеров «синтетических судеб» людей с идеальной памятью

Ценность релаксации

Наши модельные судьбы мы описали очень примечательным процессом. Он называется одномерным случайным блужданием и имеет ряд необычных свойств, среди которых — самоподобие, то есть отсутствие какого-либо характерного временного масштаба. Получив в свое распоряжение неограниченное время, случайное блуждание способно увести неограниченно далеко. Более того, оно обязательно уведет вас на любое наперед заданное расстояние от начального значения! Таким образом, как бы хорошо ни шли ваши дела, но если они подчинены случайному блужданию, то обязательно скатятся до нуля и уйдут ниже — это просто вопрос времени! Правда, если речь о существенных отклонениях, то очень большого времени. Можно показать, что в рассмотренном нами процессе ожидаемая величина отклонения от начального состояния пропорциональна квадратному корню от времени. Это значит, что ожидаемое время, за которое система, отклонившаяся от нуля, вновь вернется в нулевое состояние, пропорционально квадрату начального отклонения.

Помните, как говорил кот Матроскин в известном мультфильме «Каникулы в Простоквашино»: «Я и так счастливый был, а теперь в два раза счастливей стану. Потому что у меня две коровы есть!» Таким образом, можно предположить, что рождение теленка (появление второй коровы) продлит счастье Матроскина в четыре раза.

Но все же идеальная эмоциональная память — это не очень хорошо. Наши герои не забывают ничего и тщательно хранят в памяти всё, даже самые давние события! На их настроение в старости влияет горе от поломанной игрушки в детстве или радость от поцелуя в юности. Причем все последующие поцелуи и игрушки имеют для них такую же важность. Надо этих бедолаг спасать. Эмоции со временем стихают, горе притупляется, радость, увы, тоже. Забывание во многом подобно остыванию, диффузии или замедлению движения в вязкой жидкости, поэтому разумно смоделировать его подобным образом. Перечисленные события относятся к процессам релаксации, о которых мы говорили в конце главы 2. Наделим же и наших героев способностью к релаксации!

Релаксирующая система возвращается к равновесному состоянию, причем тем быстрее, чем больше отклонение от равновесия. Это свойство можно смоделировать геометрической прогрессией или экспоненциальным законом. Введем в нашу модель новый параметр — скорость забывания μ. Его можно выразить через время (в отсчетах нашей модели), за которое уровень эмоции уменьшится достаточно сильно. Например, для μ = 1/60 эмоциональный след от события уменьшится на порядок через два месяца. И вот теперь жизнь стала по-хорошему «полосатой» (рис. 6.6)!


Рис. 6.6. Ограничение памяти приводит к тому, что череда событий и их следов в памяти, сливаясь, образует череду эмоционально окрашенных полос


Меняя «степень забывчивости», мы можем получить более или менее эмоционально уравновешенных подопытных. Кажется, мы нашли источник зеброобразности! Это, во-первых, случайные блуждания, склонные к расползанию во все стороны; во-вторых, целительная забывчивость, возвращающая настроение в норму. Результатом становится волнообразное меандрирование[24] настроения.

Изучим свойства полученных нами «синтетических» житейских полос. Построим гистограмму, показывающую распределение их длительностей для длиннющей жизни (или множества обычных) с параметрами λ=1/7, μ=1/60 (рис. 6.7).


Рис. 6.7. Распределение длительностей периодов счастья и горя для большого числа синтетических судеб. Вертикальной линией отмечено среднее значение, равное 33


Первое, что бросается в глаза, — максимум распределения (мода) находится вблизи нуля. Значит, чаще всего времена счастья и несчастья очень коротки, однако встречаются и периоды длительностью более года. В среднем же их продолжительность составляет 33 дня со стандартным отклонением в 36 дней. Это распределение близко к экспоненциальному (на самом деле оно неплохо описывается более общим гамма-распределением с такими параметрами, которые приближают его к экспоненциальному). В свою очередь, экспоненциальное распределение длительностей полос в жизни означает, что смены настроений можно рассматривать как пуассоновский поток — цепочку независимых случайных событий, не имеющих определенной частоты, но случающихся с некоторой известной интенсивностью. Например, в рассмотренном нами примере темные и светлые полосы сменяются с интенсивностью раз в 33 дня, но гораздо чаще в жизни наблюдаются короткие периоды: половина их не дольше десяти дней.

В случае отсутствия «памяти» (для μ = 0) распределение перестает быть экспоненциально убывающим и описывается распределением Юла, которое можно приблизить степенным распределением (распределением Парето) для длительности меандров T (рис. 6.8).


Рис. 6.8. Распределение длительностей меандров для случайного блуждания имеет характер степенного. Двойной логарифмический масштаб графика позволяет распознать степенную зависимость


Статистики говорят, что у таких распределений тяжелый хвост, делающий вполне вероятными очень большие отклонения от среднего значения. Мы наблюдали их в виде долгих «погружений» в то или иное настроение. У полученного распределения есть одно непривычное и странное свойство: для него не определены ни среднее значение (математическое ожидание), ни стандартное отклонение. В предыдущей главе мы уже упоминали, что такое бывает, например, у распределения Коши. Дело в том, что все соответствующие интегралы для распределения Юла расходятся. В связи с этим можно слышать, что и среднее значение в таком случае бесконечно, но это не так. Посмотрите, что произойдет при попытке вычислить математическое ожидание длительности меандров случайного блуждания (рис. 6.9).