Мы с вами, конечно, не роботы и не демоны, а большинство не умеют жонглировать и тремя апельсинами. Но неужели люди подбрасывают монетки настолько неряшливо и непредсказуемо, что законы механики могут приводить к случайностям? Да и откуда вообще берется случайность в мире, описываемом строгими и предсказуемыми законами механики? Существует ли она в реальном мире? Многие мои знакомые, в том числе искушенные в науке, уверены, что настоящих случайностей не бывает, есть лишь нехватка информации, неточные расчеты, глубинное непонимание человеком механики физического мира. Однако «Бог не играет в кости с Вселенной». Эта фраза, неоднократно повторенная Альбертом Эйнштейном, стала девизом механистической картины мира, которая в XXI веке вынуждена уживаться с квантовой механикой, ее неустранимой, как нам сейчас кажется, стохастичностью (случайностью).
Но в чем же разница между истинно хаотическими или стохастическими системами, принципиально непредсказуемыми, и теми, где трудно угадать поведение, рассчитать которое все же возможно? Когда стоит переходить на язык вероятностей и о чем он позволяет говорить, что невозможно выразить иначе, не прибегая к этому языку?
Что мы имеем в виду, говоря о вероятности?
Начнем разбираться с простенькой монеткой и посмотрим, каким может быть источник неопределенности в эксперименте с подбрасыванием. Задача подробно рассматривалась в 1986 году Джозефом Келлером[7], и здесь мы приведем простое объяснение возникновению неопределенности в этом нехитром процессе, основанное на рассуждениях из его статьи. В самом первом приближении то, какой стороной упадет монета, зависит от времени ее полета t и угловой скорости ω. Если измерять последнюю в оборотах за единицу времени, то число оборотов, совершаемое монетой, выражается предельно просто: n = tω. Эта зависимость задает линии равного числа оборотов в координатах (t, ω), а они, в свою очередь, ограничивают области, соответствующие четному и нечетному числу оборотов: тому, сменится ли сторона монетки после подбрасывания или нет. Пример такой диаграммы показан на рис. 2.1.
Рис. 2.1. Диаграмма, показывающая четность количества оборотов монеты в полете. Прямоугольником показана область, в которой чаще всего происходит процесс гадания на монетке при подбрасывании рукой
С помощью этой полосатой диаграммы можно выяснить, каким будет результат подбрасывания монетки, закрученной на известное число оборотов в секунду и пойманной через известное время после броска. Если попадаем в белую полоску, выпадет та же сторона, что была сверху при броске; если в серую — обратная. Линии равного числа оборотов представляют собой гиперболы; видно, что по мере увеличения числа оборотов чередование областей становится все более частым, а сами области оказываются тоньше. Человеческая рука несовершенна, и очень небольшой разброс начальных значений перекрывает сразу много областей, делая исход непредсказуемым. В диапазоне действия руки (прямоугольник на диаграмме) смещения на 5 % достаточно для того, чтобы перескочить с белой полоски на серую. Остается вопрос: как из этого построения следует «честность» настоящей монеты? Как из такой диаграммы получить вероятность выпадения орла или решки?
Чтобы перевести наши рассуждения на язык вероятностей, окунемся в математику, которую не проходят в школе. И хотя от нее ожидают чего-то сложного, сейчас она упростит дело и поможет лучше понять, о чем мы рассуждаем.
Во введении я говорил, что математики изучают не числа или геометрические фигуры, как может показаться после изучения школьного курса. Они работают со сложными структурами (абстрактными алгебрами, полукольцами, полями, моноидами, топологическими пространствами и прочей абстрактной всячиной), описывают их, вроде бы совершенно не привязываясь к практике, корректно определяют, изучают их свойства, доказывают теоремы. А потом они оттачивают мастерство в поиске подобных структур в самых разных явлениях природы и областях человеческих знаний, совершая удивительно полезные прорывы, в том числе в чисто прикладных областях. Сейчас мы рассмотрим, как строится базис теории вероятностей, основанный на достаточно абстрактном понятии меры.
Мы описали механику монетки и получили области, описывающие множества решений с определенными свойствами. Области — плоские фигуры. Как правильно перейти от них к вероятностям? Нужно измерять наши области, и мы естественным путем приходим к их площади. Площадь — мера плоской фигуры. Это точный математический термин, обозначающий функцию, которая множеству ставит в соответствие некую неотрицательную числовую величину.
В математике есть целый раздел, который называется теорией меры. Она родилась на рубеже XIX–XX веков (у ее истоков стояли французы Эмиль Борель и Анри Леон Лебег) и открыла математикам широкие возможности для анализа очень сложно устроенных объектов: канторовых и фрактальных множеств. Теория меры легла в основу функционального анализа и современной теории вероятностей. Определение вероятности как меры позволяет увидеть все ее основные свойства как для дискретных, так и для непрерывных множеств.
Хотя наша книга не учебник, на этом стоит остановиться, чтобы взглянуть на понятия теории вероятностей как бы с «высоты птичьего полета» и почувствовать вкус «большой» математики. Я прошу читателя не пугаться, если что-то в приводимых ниже определениях покажется непонятным. Если язык математики вам незнаком, воспринимайте это как отрывок текста «в оригинале» на незнакомом вам языке. Он может быть не полностью понятен, но в нем нет искажений «переводчика» и не нарушена целостность. При изучении истории, литературы или иностранных языков необходимо работать или хотя бы знакомиться с оригинальными текстами и полными цитатами. Язык математики тоже требует знакомства с «оригиналом», поскольку в текстах определений и теорем ничего ни прибавить, ни убавить без потерь не получится. Попытки сократить текст «для ясности» порой приводят к серьезным неточностям и вовсе к ошибкам. Итак, вот как звучит определение меры.
Пусть имеется множество X.
Набор его подмножеств F называется алгеброй, если для F верно:
1) пустое множество принадлежит F: ∅ ∈ F;
2) если множество A ∈ F, то и его дополнение X\A ∈ F;
3) если A и B ∈ F, то их объединение A∪B ∈ F.
Из этого определения следует, что пересечение множеств A и B принадлежит F, а также то, что объединение или пересечение любого конечного числа множеств принадлежит F. Говорят, что алгебра замкнута относительно конечного объединения и пересечения.
Набор подмножеств F называется сигма-алгеброй, если вместо 3) потребовать более сильное условие: чтобы объединение счетного числа множеств Ai принадлежало F: если Ai ∈ F, то ∪iAi ∈ F.
Из этого определения следует, что и пересечение счетного числа множеств принадлежит F. Иными словами, сигма-алгебра замкнута относительно счетного объединения и пересечения.
Пусть F — алгебра множеств. Функция μ, сопоставляющая любому множеству A∈F какое-нибудь неотрицательное число, называется мерой, если:
1) мера пустого множества равна 0: μ(∅) = 0;
2) для любых непересекающихся множеств A, B ∈ F, то есть A ∩ B = ∅, верно μ(A∪B) = μ(A) + μ(B). Такое свойство называется аддитивностью.
Если же взять F — сигма-алгебру, а во втором условии взять счетное количество непересекающихся множеств, то получится более сильное условие μ(∪iAi) = Σiμ(Ai), которое называется сигма-аддитивностью. Такая мера называется сигма-аддитивной.
Из определения меры следуют такие свойства:
1) если A включается в B, то мера A не больше, чем у B: если A⊆B, то μ(A) ≤ μ(B);
2) если A включается в B, то мера разности множеств равна разности мер: если A⊆B, то μ(B\A) = μ(B) — μ(A);
3) для любых A и B верно μ(A∪B)= μ(A)+ μ(B) − μ(A∩B).
Знакомые каждому примеры мер — количества (количество яблок в мешке, например), а также длины, площади, объемы фигур.
Количество элементов — так называемая считающая мера. Каждому подмножеству A поставим в соответствие количество элементов в нем: для конечных A положим μ(A) = |A|, а для бесконечных — μ(A) = ∞.
Длина на прямой, площадь на плоскости, объем в пространстве — тоже мера. Во всех случаях условие аддитивности выполняется.
Всякая ли неотрицательная числовая функция может быть мерой? Вовсе нет. Например, возраст ставит человеку в соответствие вполне определенное положительное число. Но он не подходит под определение меры. Предположение о том, что возраст может быть таковой, приводит к забавным парадоксам. Представьте себе кошку, которой пять лет. Естественно, что и правой, и левой половине животного тоже по пять лет, ведь они возникли одновременно. Если бы возраст был мерой, как, например, кошкин вес, то, согласно свойству аддитивности, кошке как сумме ее половинок должно быть уже десять лет. Подобное деление, впрочем, можно продолжить и достичь сколь угодно большого возраста. С другой стороны, мера части не может превосходить меры целого. Иначе говоря, хвост должен быть строго моложе кошки, а шерстинки на хвосте, соответственно, еще моложе. Так мы приходим к выводу, что мельчайшие клетки, из которых состоит пятилетняя кошка, должны были появиться на свет практически только что. Подобные рассуждения можно применить к таким измеримым величинам, как температура или скорость, которые не являются мерами. Два человека бегут не вдвое быстрее одного. По этому поводу в книге Артура Блоха был сформулирован